Complexes of Silver 1,1,1,5,5,6,6,6-Octafluorohexane-2,4-dionate with π-Donor Ligands: Synthesis, Structure, and Thermal Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two new Ag(I) complexes with 1,1,1,5,5,6,6,6-octafluorohexane-2,4-dionate ion (Ofhac) and π‑donor neutral ligands, vinyltriethylsilane (VTES) or cycloocta-1,5-diene (COD), were synthesized with the goal to expand the library of silver precursors for chemical vapor deposition. The products were characterized by elemental analysis and IR and NMR spectroscopy. The complex [Ag(VTES)(Ofhac)] (I) was liquid under standard conditions; the temperature of its crystallization was below –20°C. Treatment of I with benzene gave rise to crystals of [Ag4(C6H6)2(Ofhac)4]∞ (II), which was confirmed by NMR and X-ray diffraction (CCDC no. 2232810). The structure of [Ag(COD)(Ofhac)]2 (III) was established by X-ray diffraction (CCDC no. 2232809). The binuclear molecules are formed due to the μ2-κ1(O):κ1(O') function of the Ofhac ligands (Ag–O, 2.458(2)–2.461(2) Å), while COD is κ2-η2:η2-coordinated (Ag–C, 2.420(17)–2.684(11) Å). The thermal properties of I and III in comparison with analogues containing 1,1,1,5,5,5-hexafluoropentane-2,4-dionate ion (Hfac) were studied by thermogravimetry.

About the authors

E. S. Vikulova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: lazorevka@mail.ru
Россия, Новосибирск

I. Yu. Il’in

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: lazorevka@mail.ru
Россия, Новосибирск

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: lazorevka@mail.ru
Россия, Новосибирск

P. K. Artamonova

Novosibirsk State Technical University, Novosibirsk, Russia

Email: lazorevka@mail.ru
Россия, Новосибирск

N. B. Morozova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Author for correspondence.
Email: lazorevka@mail.ru
Россия, Новосибирск

References

  1. Leskelä M., Ritala M., Nilsen O. // MRS Bull. 2011. V. 36. № 11. P. 877. https://doi.org/10.1557/mrs.2011.240
  2. Piszczek P., Radtke A. // Noble and Precious Metals – Properties, Nanoscale Effects and Applications / Eds. Seehra M.S., Bristow A.D. London: IntechOpen, 2018. P. 187. https://doi.org/10.5772/intechopen.71571
  3. Hagen D.J., Pemble M.E., Karppinen M. // Appl. Phys. Rev. 2019. V. 6. № 4. Art. 041309. https://doi.org/10.1063/1.5087759
  4. Wack S., Lunca Popa P., Adjeroud N. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 32. P. 36329. https://doi.org/10.1021/acsami.0c08606
  5. Mandia D.J., Zhou W., Albert J. et al. // Chem. Vapor Depos. 2015. V. 21. № 1–3. P. 4. https://doi.org/10.1002/cvde.201400059
  6. Radtke, A., Grodzicka, M., Ehlert M. et al. // J. Clin. Med. 2019. V. 8. № 3. P. 334. https://doi.org/10.3390/jcm8030334
  7. Basova T.V., Vikulova E.S., Dorovskikh S.I. et al. // Mater. Des. 2021. V. 204. Art. 109672. https://doi.org/10.1016/j.matdes.2021.109672
  8. Liu X., Gan K., Liu H. et al. // Dental Mater. 2017. V. 33. № 9. P. e348. https://doi.org/10.1016/j.dental.2017.06.014
  9. Geng H., Poologasundarampillai G., Todd N. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 25. P. 21169. https://doi.org/10.1021/acsami.7b05150
  10. Radtke A., Jędrzejewski T., Kozak W. et al. // Nanomaterials. 2017. V. 7. № 7. 193. https://doi.org/10.3390/nano7070193
  11. Nazarov D., Ezhov I., Yudintceva N. et al. // J. Funct. Biomater. 2022. V. 13. № 2. 62. https://doi.org/10.3390/jfb13020062
  12. Zanotto L., Benetollo F., Natali M. et al. // Chem. Vapor Depos. 2004. V. 10. № 4. P. 207. https://doi.org/10.1002/cvde.200306290
  13. Mishra S., Daniele, S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c
  14. Liu H., Battiato S., Pellegrino A.L. et al. // Dalton Trans. 2017. V. 46. № 33. P. 10986. https://doi.org/10.1039/C7DT01647F
  15. Grodzicki A., Łakomska I., Piszczek P. et al. // Coord. Chem. Rev. 2005. V. 249. № 21–22. P. 2232. https://doi.org/10.1016/j.ccr.2005.05.026
  16. Szłyk E., Szczęsny R., Wojtczak A. // Dalton Trans. 2010. V. 39. № 7. P. 1823. https://doi.org/10.1039/B911741E
  17. Madajska K., Dobrzańska L., Muzioł T. et al. // Polyhedron. 2022. V. 227. Art. 116149. https://doi.org/10.1016/j.poly.2022.116149
  18. Sato H., Sugawara S. // Inorg. Chem. 1993. V. 32. № 10. P. 1941. https://doi.org/10.1021/ic00062a011
  19. Chi K.M., Chen K.H., Peng S.M. et al. // Organometallics. 1996. V. 15. № 10. P. 2575. https://doi.org/10.1021/om960013e
  20. Bailey A., Corbitt T.S., Hampden-Smith M.J. et al. // Polyhedron, 1993. V. 12. № 14. P. 1785. https://doi.org/10.1016/S0277-5387(00)84613-6
  21. Partenheimer W., Johnson E.H. // Inorg. Chem. 1972. V. 11. № 11. P. 2840. https://doi.org/10.1021/ic50117a052
  22. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. 408 с.
  23. Кочелаков Д.В., Викулова Е.С., Куратьева Н.В. и др. // Журн. cтруктур. химии. 2023. Т. 64. № 1. Art. 104595. https://doi.org/10.26902/JSC_id104595
  24. Fadeeva V.P., Tikhova V.D., Deryabina Y.M. et al. // J. Struct. Chem. 2014. V. 55. № 5. P. 972. https://doi.org/10.1134/S0022476614050278
  25. Тихова В.Д., Фадеева В.П., Никуличева О.Н. и др. // Химия в интересах устойчивого развития. 2022. Т. 30. С. 660. (Tikhova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sustain Dev. 2022. V. 30. P. 640). https://doi.org/10.15372/CSD2022427
  26. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. С. 200.
  27. Vikulova E.S., Sukhikh T.S., Gulyaev S.A. et al. // Molecules. 2022. V. 27. № 3. P. 677. https://doi.org/10.3390/molecules27030677
  28. Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organometallics. 2010. V. 29. P. 2176. https://doi.org/10.1021/om100106e
  29. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  30. Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  31. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. -Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  32. Evans W.J., Giarikos D.G., Josell D. et al. // Inorg. Chem. 2003. V. 42. № 25. P. 8255. https://doi.org/10.1021/ic034649r
  33. Schmidbaur H., Schier A. // Angew. Chem. 2015. V. 54. № 3. P. 746. https://doi.org/10.1002/anie.201405936
  34. Doppelt P., Baum T.H., Ricard L. // Inorg. Chem. 1996. V. 35. № 5. P. 1286. https://doi.org/10.1021/ic9410102
  35. Black K., Singh J., Mehta D. et al. // Sci. Rep. 2016. V. 6. № 1. P. 1. https://doi.org/10.1038/srep20814
  36. Jurczyk J., Glessi C., Madajska K. et al. // J. Therm. Anal. Calorim. 2022. V. 147. № 3. P. 2187. https://doi.org/10.1007/s10973-021-10616-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (167KB)
3.

Download (270KB)
4.

Download (585KB)
5.

Download (1MB)
6.

Download (77KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies