Specific changes in contractive functions and skeletal muscle architecture in humans in response to the use of two protocols of unmodulated neuro-muscular electrostimulation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The purpose of this study was to study the effect of unmodulated low-frequency superficial of neuromuscular electrical stimulation (NMES) of 30 and 60 min/day for 7 weeks on the force, velocity-strength properties of the triceps surae muscle (TS) and architecture (lengths and angles of fascicles) of human the medial gastrocnemius muscle (MG). Many studies have examined the effect of training intensity (percentage of maximal voluntary isometric contraction — MVC) during NMES on muscle force response. However, no study has examined the effect of the number of NMES sessions per day over 7 weeks on changes in the TS strength. Ten healthy volunteers (23.2 ± 3.2 years; age range 18–28 years) volunteered for the study and were randomly assigned to group 1 (30 min NMES) and group 2 (60 min NMES) 5 times a day. NMES for a 7-week period, a total of 35 NMES workouts Isometric triceps calf strength was recorded with a Biodex isokinetic dynamometer. The longitudinal ultrasonic images of the MG was measured in vivo using the B-mode Edge ultrasound system. After a 7-week training period, MVC and voluntary maximal “explosive” strength differed significantly between groups. Based on electrical stimulation parameters and healthy subjects in this study, electrical training caused an increase in foot extensor muscle strength and a gradient in voluntary explosive strength when used for 5 training per week for 30 min for 7 weeks.

全文:

受限制的访问

作者简介

Yu. Koryak

Institute of Biomedical Problems of the RAS

编辑信件的主要联系方式.
Email: yurikoryak@mail.ru
俄罗斯联邦, Moscow

参考

  1. Leterme D., Falempin М. Contractile properties of rat soleus motor units following 14 days of hindlimb unloading // Pflüg. Arch. 1996. V. 432. № 2. P. 313.
  2. Gazenko O.G., Grigoriev A.I., Kozlovskaya I.B. Mechanisms of acute and chronic effects of microgravity // Physiologist. 1987. V. 30. Suppl. 1. P. S1.
  3. Stump C.S., Overton J.М., Tipton С.М. Influence of single hindlimb support during simulated weightlessness in the rat // J. Аррl. Physiol. 1990. V. 68. № 2. P. 627.
  4. Hernández Corvo R., Kozlovskaia I.B., Kreĭdich Yu.V. et al. [Effect of a 7-day space flight on the structure and function of the human locomotor apparatus] // Kosm. Biol. Aviakosm. Med. 1983. V. 17. № 2. P. 37.
  5. Stepantsov V.I., Tikhonov M.A., Eremin A.V. [Physical training as a method of preventing the hypodynamic syndrome] // Kosm. Biol. Med. 1972. V. 6. № 4. P. 64.
  6. Akima H., Kubo K., Imai M. et al. Inactivity and muscle: effect of resistance training during bed rest on muscle size in the lower limb // Acta Physiol. Scand. 2001. V. 172. № 4. P. 269.
  7. Kawakami Y., Akima H., Kubo K. et al. Changes in muscle size, architecture and neural activation after 20 days of bed rest with and without countermeasures // Eur. J. Appl. Physiol. 2001. V. 84. № 1-2. P. 7.
  8. Koryak Yu.A. [Neuromuscular adaptation to short-term and long-term space flights] // ISS, RAS Institute of Biomedical Problems of the Russian Academy of Sciences, Russian segment, 2011. P. 93.
  9. Koryak Yu.A. [Adaptation of human skeletal muscles]. M.: Publishing house of the Academy of Natural Sciences, 2012. 318 p.
  10. Morukov B.V., Larina I.M., Grigor’ev A.I. [Changes in calcium metabolism and its regulation in humans during prolonged space flight] // Fiziologiia Cheloveka. 1998. V. 24. № 2. P. 102.
  11. Oganov V.S., Bogomolov V.V. [Human bone system in microgravity: review of research data, hypotheses and predictability of state in extended (exploration) missions] // Aviakosm. Еkolog. Med. 2009. V. 43. № 1. P. 3.
  12. Vico L., Collet P., Guignandon A. et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts // Lancet. 2000. V. 355. № 9215. P. 1607.
  13. Ward A.R., Robertson V.J., Ioannou H. The effect of duty cycle and frequency on muscle torque production using kilohertz frequency range alternating current // Med. Eng. Phys. 2004. V. 26. № 7. P. 569.
  14. Maffiuletti N.A., Herrero A.J., Jubeau M. et al. Differences in electrical stimulation thresholds between men and woman // Ann. Neurol. 2008. V. 63. № 4. P. 507.
  15. Petrofsky J. The effect of the subcutaneous fat on the transfer of current through skin and into muscle // Med. Eng. Phys. 2008. V. 30. № 9. P. 1168.
  16. Dantas L.O., Vieira A., Junior A.L.S. et al. Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women // Muscle Nerve. 2015. V. 51. № 1. P. 76.
  17. Doheny E.P., Caulfield B.M., Minogue C.M., Lowery M.M. Effect of subcutaneous fat thickness and surface electrode configuration during neuromuscular electrical stimulation // Med. Eng. Phys. 2010. V. 32. № 5. P. 468.
  18. Kots Ya.M. [Muscle strength training using electrical stimulation. Message I. Theoretical premises] // Teor. Prakt. Fiz. Kult. 1970. № 3. P. 64.
  19. Kots Ya.M. [Using the electrical stimulation method in sports] / Com. in physics culture and sports under the Council of Ministers of the USSR. All-Union problematic scientific advice. M.: Method. Cabinet of State Center for Physical Culture, 1971. 49 p.
  20. Salvini T.F., Durigan J.L., Peviani S.M., Russo Th.L. Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy // Rev. Bras. Fisioter. 2012. V. 16. № 3. P. 175.
  21. Thomas A.C., Stevens-Lapsley J.E. Importance of attenuating quadriceps activation deficits after total knee arthroplasty // Exerc. Sport Sci. Rev. 2012. V. 40. № 2. P. 95.
  22. Baroni B.M., Geremia J.M., Rodrigues R. et al. Functional and morphological adaptations to aging in knee extensor muscles of physically active men // J. Appl. Biomech. 2013. V. 29. № 5. P. 535.
  23. Vaz M.A.I., Baroni B.M., Geremia J.M. et al. Neuromuscular Electrical Stimulation [NMES] Reduces Structural and Functional Losses of Quadriceps Muscle and Improves Health Status in Patients with Knee Osteoarthritis // J. Orthop. Res. 2013. V. 31. № 4. P. 511.
  24. Gondin J., Patrick J., Cozzone P.J., Bendahan D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? // Eur. J. Appl. Physiol. 2011. V. 111. № 10. P. 2473.
  25. Sheffler L.R., Chae J. Neuromuscular electrical stimulation in neurorehabilitation // Muscle Nerve. 2007. V. 35. № 5. P. 562.
  26. Bax L., Filip S., Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomized controlled trials // Sports Med. 2005. V. 35. № 3. P. 191.
  27. Vanderthommen M., Jacques D. Electrical stimulation as a modality to improve performance of neuromuscular system // Exerc. Sports Sci. Rev. 2007. V. 35. № 4. P. 180.
  28. Maffiuletti N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation // Eur. J. Appl. Physiol. 2010. V. 110. № 2. P. 223.
  29. Currier D.P., Mann R. Muscular strength development byelectrical stimulation in healthy individuals // Phys. Ther. 1983. V. 63. № 6. P. 915.
  30. Eriksson E., Haggmark T., Kiessling K.H., Karlsson J. Effect of electrical stimulation on human skeletal muscle // Int. J. Sports Med. 1981. V. 2. № 1. P. 18.
  31. Kubiak R.J., Whitman K.M., Johnston R.M. Changes in quadriceps femoris muscle strength using isometric exercise versus electrical stimulation // J. Orthop. Sports Phys. Ther. 1987. V. 8. № 11. P. 537.
  32. Derr J., Goldsmith L.J. How to report non significant results: planning to make the best use of statistical power calculations // J. Orthop. Sports Phys. Ther. 2003. V. 33. № 6. P. 303.
  33. Eriksson E., Haggmark T. Comparison of isometic muscle training and electrical stimulation supplementing isometric muscle training in the recovery after major knee ligament surgery. A preliminary report // Amer. J. Sports Med. 1979. V. 7. № 3. P. 169.
  34. Selkowitz D.M. Improvement in isometric strength of the quadriceps femoris muscle after training with electricalstimulation // Phys. Ther. 1985. V. 65. № 2. P. 186.
  35. Snyder-Mackler L., Delitto A., Stralka S.W., Bailey S.L. Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction // Phys. Ther. 1994. V. 74. № 10. P. 901.
  36. Lai H.S., De Domenico G., Strauss G.R. The effects of different electro-motor stimulation training instensitieson strength improvement // Aust. J. Physiother. 1988. V. 34. № 3. P. 151.
  37. Laughman R.K., Youdas J.W., Garrett T.R., Chao E.Y. Strength changes in the normal quadriceps femoris muscle as a result of electrical stimulation // Phys. Ther. 1983. V. 63. № 4. P. 494.
  38. Mohr T., Carlson B., Sulentic C., Landry R. Comparison of isometric exercise and high volt galvanic stimulation on quadriceps femoris muscle strength // Phys. Ther. 1985. V. 65. № 5. P. 606.
  39. Grosset J.-F., Canon F., Pérot Ch., Lambertz D. Changes in contractile and elastic properties of the triceps surae muscle induced by neuromuscular electrical stimulation training Introduction // Eur. J. Appl. Physiol. 2014. V. 114. № 7. P. 1403.
  40. Gondin J., Guette M., Ballay Y., Martin A. Neural and muscular changes to detraining after electrostimulation training // Eur. J. Appl. Physiol. 2006. V. 97. № 2. P. 165.
  41. Gondin J., Brocca L., Bellinzona E. et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis // J. Appl. Physiol. 2011. V. 110. № 2. P. 433.
  42. Snyder-Mackler L., Binder-Macleod S.A., Williams P.R. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction // Med. Sci. Sports Exerc. 1993. V. 25. № 7. P. 783.
  43. Parker M.G., Berhold M., Brown R. et al. Fatigue response in human quadriceps femoris muscle during high frequency electrical stimulation // J. Orthop. Sports Phys. Ther. 1986. V. 7. № 4. P. 145.
  44. Maffiuletti N.A., Pensini M., Martin A. Activation of human plantar flexor muscles increases after electromyostimulation training // J. Appl. Physiol. 2002. V. 92. № 4. P. 1383.
  45. Kots Ya.M., Khvilon V.A. [Muscle strength training using electrical stimulation. Message 2. Training using the method of electrical tetanic stimulation of muscles with rectangular impulses] // Teor. Prakt. Fiz. Kult. 1971. № 4. P. 66.
  46. Koryak Yu.A. Training effect of high-frequency electrical stimulation on the human tibialis anterior muscle. Part I. Effect on muscle force and cross-sectional area of the muscle // Human Physiology. 1993. V. 19. № 1. P. 19.
  47. Koryak Yu.A. Training effect of high-frequency electrical stimulation on the tibialis anterior muscle in humans. II. Influence on speed-strength properties and performance // Human Physiology. 1993. V. 19. № 3. P. 125.
  48. Brown L.E., Weir J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power // J. Exerc. Physiol. Online. 2001. V. 4. № 3. P. 1.
  49. Kawakami Y., Ichinose Y., Fukunaga T. Architectural and functional features of human triceps surae muscles during contraction // J. Appl. Physiol. 1998. V. 85. № 2. P. 398.
  50. Berg H.E., Tedner B., Tesch P.A. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine // Acta Physiol. Scand. 1993. V. 148. № 4. P. 379.
  51. Blaber A.P., Goswami N., Bondar R.L., Kassam M.S. Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight // Stroke. 2011. V. 42. № 7. P. 1844.
  52. Blazevich A.J., Gil N.D., Zhou Sh. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo // J. Anat. 2006. V. 209. № 3. P. 289.
  53. Gondin J., Cozzone P.J., Bendahan D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? // Eur. J. Appl. Physiol. 2011. V. 111. № 10. P. 2473.
  54. Reeves N.D., Maganaris C.N., Narici M.V. Ultrasonographic assessment of human skeletal muscle size // Eur. J. Appl. Physiol. 2004. V. 91. № 1. P. 116.
  55. Fukunaga T., Ichinose Y., Ito M. et al. Determination of fascicle length and pennation in a contracting human muscle in vivo // J. Appl. Physiol. 1997. V. 82. № 1. P. 354.
  56. Koryak Yu.A. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity // J. Appl. Physiol. 2019. V. 126. № 4. P. 880.
  57. Koryak Yu.A. Changes in human skeletal muscle architecture and function induced by extended spaceflight // J. Biomechanics. 2019. V. 97. P. 109408.
  58. Kawakami Y., Abe T., Kuno S.Y., Fukunaga T. Training induced changes in muscle architecture and specific tension // Eur. J. Appl. Physiol. 1995. V. 72. № 1-2. P. 37.
  59. Bickel C.S., Slade J.M., Haddad F. et al. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects // J. Appl. Physiol. 2003. V. 94. № 6. P. 2255.
  60. Gondin J., Guette M., Ballay Y., Martin A. Electromyostimulation Training Effects on Neural Drive and Muscle Architecture // Med. Sci. Sports Exerc. 2005. V. 37. № 8. P. 1291.
  61. Vaz M.A., Aragão F.A., Boschi E.S. et al. Effects of Russian current and low-frequency pulsed current on discomfort level and current amplitude at 10% maximal knee extensor torque // Physiother. Theory Pract. 2012. V. 28. № 8. P. 617.
  62. Suetta C., Andersen J.L., Dalgas U. et al. Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients // J. Appl. Physiol. 2008. V. 105. № 1. P. 180.
  63. Fukasblro S., Itoh M., Ichinose Y. et al. Ultгаsоnоgrарhу gives directly but noninvasively elastic characteristics of human tendon in vivo // Еur. J. Appl. Physiol. 1995. V. 71. № 6. P. 555.
  64. Тrestik С.L., Lieber R.L. Relationship between Achilles tendon mechanical properties and gastrocnemius muscle function // J. Bioтech. Eng. 1993. V. 115. № 3. P. 225.
  65. Miller R.G., Mirka A., Maxfield M. Rate of tension development in isometric contractions of a human hand muscle // Exp. Neurol. 1981. V. 73. № 1. P. 267.
  66. Bigland-Ritchie B., Johansson R., Lippold O.C.J., Woods J.J. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions // J. Neurophysiol. 1983. V. 50. № 1. P. 313.
  67. Deley G., Cometti C., Fatnassi A. et al. Effects of combined electromyostimulation and gymnastics training in prepubertal girls // J. Strength Cond. Res. 2011. V. 25. № 2. P. 520.
  68. Wegrzyk J., Fouré A., Vilmen Ch. et al. Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms // Clin. Neurophysiol. 2015. V. 126. № 7. P. 1400.
  69. Gonnelli F., Rejc E., Giovanelli N. et al. Effects of NMES pulse width and intensity on muscle mechanical output and oxygen extraction in able-bodied and paraplegic individuals // Eur. J. Appl. Physiol. 2021. V. 121. № 6. P. 1653.
  70. Dantas L.O., Vieira A., Siqueira A.L., Jr. et al. Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women // Muscle Nerve. 2015. V. 51. № 1. P. 76.
  71. Medeiros D.M., Lima C.S. Influence of chronic stretching on muscle performance: Systematic review // Hum. Mov. Sci. 2017. V. 54. P. 220.
  72. Hymes A.C., Raab D.E., Yonchird E.G. Acute pain control by electrostimulation: a preliminary report // Adv. Neurol. 1974. V. 4. P. 761.
  73. Lexell J., Henriksson-Larsen K., Sjostrom M. Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis // Acta Physiol. Scand. 1983. V. 117. № 1. P. 115.
  74. Knight C.A., Kamen G. Superficial motor units are larger than deeper motor units in human vastus lateralis muscle // Muscle Nerve. 2005. V. 31. № 4. P. 475.
  75. Blair E., Erlanger J. A comparison of the characteristics of axons through their individual electrical responses // Am. J. Physiol. 1933. V. 106. P. 524.
  76. Solomonow M. External control of the neuromuscular system // IEEE Trans. Biomed. Eng. 1984. V. 31. № 12. P. 752.
  77. Enoka R.M. Activation order of motor axons in electrically evoked contractions // Muscle Nerve. 2000. V. 25. № 6. P. 763.
  78. Almekinders L.C. Transcutaneous muscle stimulation for rehabilitation // Phys. Sportsmed. 1984. V. 12. P. 118.
  79. Drouin J.M., Valovich-McLeod T.C., Shultz S.J. et al. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements // Eur. J. Appl. Physiol. 2004. V. 91. № 1. P. 22.
  80. Van Driessche S., Van Roie E., Vanwanseele B., Delecluse Ch. Test-retest reliability of knee extensor rate of velocity and power development in older adults using the isotonic mode on a Biodex System 3 dynamomete // PLoS One. 2018. V. 13. № 5. P. e0196838.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Standard sagittal ultrasound image of the medial gastrocnemius muscle (MGM). The ultrasound probe was located above the muscle at 30% of the distance between the popliteal fold and the center of the lateral malleolus. Fiber length was measured along an ultrasonic signal line drawn parallel to the fiber between the deep and superficial aponeuroses. The inclination angle was measured as the angle formed by a line drawn parallel to the muscle fiber between the deep and superficial aponeuroses. The white line superimposed on the ultrasound image shows the fiber path between the superficial and deep aponeuroses. The angle (Θв) of inclination and length (Lв) of the fiber between the deep and superficial aponeuroses are presented. A marker () located between the ultrasonic transducer and the skin serves as a guide for the constancy of the transducer during measurements.

下载 (137KB)
3. Fig. 2. Change in the maximum joint moment of the foot extensor muscles in group 1 (30 min electrical stimulation (ECT)) and group 2 (60 min ECT) as a result of 7 weeks of unmodulated low-frequency “electrical” training with the maximum tolerated current intensity (A) and the dynamics of changes in the average (∆%) isometric maximum voluntary force (MVS) of the triceps surae muscle (TMG) for each week of 7-week unmodulated low-frequency “electrical” training for group 1 (30 min) and group 2 (60 min) of subjects (B ). * – p < 0.05.

下载 (165KB)
4. Fig. 3. Kinetics of changes in the strength of the foot extensor muscles during isometric voluntary “explosive” effort before and after 7 weeks of unmodulated low-frequency electrical stimulation “training” for group 1 (30 min) and group 2 (60 min) of subjects. * – p < 0.05.

下载 (75KB)
5. Fig. 4. Dynamics of changes in the averaged (∆%) current amplitude (V) of unmodulated electrical stimulation for each week of 7-week “electrical” training for group 1 (30 min ECT) and group 2 (60 min ECT).

下载 (69KB)
6. Fig. 5. Architecture of the triceps surae muscle. Dynamics of changes in the length (Lв) and angle (Θв) of the inclination of the fibers of the medial gastrocnemius muscle (MGM) under the influence of 7-week “electrical” training for group 1 (30 min ECT) and group 2 (60 min ECT) subjects.

下载 (148KB)
7. Fig. 6. Change in the angle of inclination of the fibers of the medial gastrocnemius muscle (MGM) during electrical stimulation (ECT) training. Individual data of subjects are presented during a 7-week unmodulated relatively low-frequency ECT training for group 1 (30 min, top panel) and group 2 (60 min, bottom panel) subjects.

下载 (262KB)
8. Fig. 7. Internal shortening of muscle fibers during contraction. Relationship between passive fiber length and estimated change in muscle length for MIM (neutral ankle position) before and after 7 weeks of unmodulated low-frequency electrical stimulation “training” for group 1 (30 min) and group 2 (60 min) subjects.

下载 (333KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##