Assessment of the Maximum Ability to Maintain an Upright Position on an Unstable Support

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Testing the maximum ability to maintain the balance of an upright body is in demand both in the physiology of posture regulation and, especially, in the diagnosis of athletic abilities. However, there is currently no technology for estimating maximum balance ability (MBA). The aim of the work was to develop and approbate a test for assessing MBA using eleven see-saws of decreasing radius of curvature movable in the sagittal plane in athletes of both sexes. Additional tasks were: 1) to compare the discriminating ability of the monopedal and bipedal test for MBA, 2) to evaluate the relationship of the MBA indicator with the area of fluctuations of the common center of pressure (ELS), determined on a stabiloplatform and simple see-saws, 3) to identify gender differences in MBA. To evaluate the MBA, a test has been developed with a stepwise increase in the difficulty of maintaining postural balance by the gradual reducing the curvature radius of see-saws. The MBA corresponded to the minimum radius of curvature of the see-saw, on which the subject could maintain balance for 15 seconds. In all the tasks of the test, the ellipse area of the center of pressure oscillations (ELS) was determined using a stabiloplatform (Stabilan 01-2). The application of the developed test on a sample of athletes (n = 78) showed that the discrimination index of the monopedal test was excellent (DI = 0.82) and significantly higher than the bipedal test (DI = 0.052). The MBA indicator in the bipedal test did not correlate with ELS in simple standing conditions, however, such weak and moderate correlations (r = -(0.27–0.48)) were established in the monopedal test. This indicates a weak predictive power of the stabilographic indicators defined in the usual stances. In both tests, the MBA indicator positively correlated with the maximum ellipse area of the center of pressure oscillations (ELSmax), showing the informative value of this indicator. The girls did not differ from the boys in MBA, but showed reduced ELS in stances on simple see-saws. To assess the maximum ability to balance, as well as the postural stability in submaximal conditions, a monopedal test with stepwise increasing complexity on movable see-saws can be used. Stablographic indicators obtained during usual quiet stances poorly predict MBA. The following indicators are the most informative about the MBA: the minimum radius of curvature of the see-saw and ELSmax, achieved in extremely difficult balance conditions. Gender differences do not affect MBA, but the postural stability on simple see-saws is higher for girls than for boys.

Авторлар туралы

A. Melnikov

The Russian University of Sport «GTSOLIFK»

Email: meln1974@yandex.ru
ORCID iD: 0000-0001-5281-5306
Dr. Sci. (Biology), Professor, Head of Department Moscow, Russian Federation

A. Peganov

The Russian University of Sport «GTSOLIFK»

Email: peganov.aleks2001@yandex.ru
ORCID iD: 0009-0009-8425-8511
Student Moscow, Russian Federation

T. Shiryaeva

The Russian University of Sport «GTSOLIFK»

Email: taisia1602@yandex.ru
ORCID iD: 0000-0001-9458-3224
PhD in Biology, Associate professor Moscow, Russian Federation

V. Son'kin

The Russian University of Sport «GTSOLIFK»; Institute of Child Development, Health, and Adaptation

Email: sonkin@mail.ru
ORCID iD: 0000-0003-3834-8080
Dr. Sci. (Biology), Professor Moscow, Russian Federation

Әдебиет тізімі

  1. Paillard T. Methods and strategies for reconditioning motor output and postural balance in frail older subjects prone to falls // Front. Physiol. 2021. V. 12. P. 700723.
  2. Zech A., Hübscher M., Vogt L. et al. Balance training for neuromuscular control and performance enhancement: A systematic review // J. Athl. Train. 2010. V. 45. № 4. P. 392.
  3. Visser J.E., Carpenter M.G., van der Kooij H., Bloem B.R. The clinical utility of posturography // Clin. Neurophysiol. 2008. V. 119. № 11. P. 2424.
  4. Мельников А.А., Смирнова П.А., Николаев Р.Ю., Федоров А.М. Взаимосвязь показателей равновесия позы в тестах разной сложности стояния // Человек. Спорт. Медицина. 2022. Т. 22. № S1. С. 28.
  5. Chen B., Liu P., Xiao F. et al. Review of the upright balance assessment based on the force plate // Int. J. Environ. Res. Public Health. 2021. V. 18. № 5. P. 2696.
  6. Kümmel J., Kramer A., Giboin L.S., Gruber M. Specificity of balance training in healthy individuals: A systematic review and meta-analysis // Sports Med. 2016. V. 46. № 9. P. 1261.
  7. Asseman F.B., Caron O., Crémieux J. Are there specific conditions for which expertise in gymnastics could have an effect on postural control and performance? // Gait Posture. 2008. V. 27. № 1. P. 76.
  8. Da Silva M.C., da Silva C.R., de Lima F.F. et al. Effects of fatigue on postural sway and electromyography modulation in young expert acrobatic gymnasts and healthy non-trained controls during unipedal stance // Front. Physiol. 2022. V. 13. P. 782838.
  9. Noé F., Paillard T. Is postural control affected by expertise in alpine skiing? // Br. J. Sports Med. 2005. V. 39. № 11. P. 835.
  10. Andreeva A., Melnikov A., Skvortsov D. et al. Postural stability in athletes: The role of sport direction // Gait Posture. 2021. V. 89. P. 120.
  11. De Mello M.C., de Sá Ferreira A., Ramiro Felicio L. Postural control during different unipodal positions in professional ballet dancers // J. Dance Med. Sci. 2017. V. 21. № 4. P. 151.
  12. Opala-Berdzik A., Głowacka M., Wilusz K. et al. Quiet standing postural sway of 10- to 13-year-old, national-level, female acrobatic gymnasts // Acta. Bioeng. Biomech. 2018. V. 20. № 2. P. 117.
  13. Borzucka D., Krecisz K., Rektor Z., Kuczyński M. Differences in static postural control between top level male volleyball players and non-athletes // Sci. Rep. 2020. V. 10. № 1. P. 19334.
  14. Kiers H., van Dieën J., Dekkers H. et al. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance // Sports Med. 2013. V. 43. № 11. P. 1171.
  15. Cimadoro G., Paizis C., Alberti G., Babault N. Effects of different unstable supports on EMG activity and balance // Neurosci. Lett. 2013. V. 548. P. 228.
  16. Иваненко Ю.П., Талис В.Л., Казенников О.В Postural reactions to vibration of achilles tendons and neck muscles on unstable support. Fiziologia Cheloveka. 1999. V. 25. № 2. P. 107. (In Russ.)
  17. Almeida G.L., Carvalho R.L., Talis V.L. Postural strategy to keep balance on the seesaw // Gait Posture. 2006. V. 23. № 1. P. 17.
  18. Noé F., García-Massó X., Paillard T. Inter-joint coordination of posture on a seesaw device // J. Electromyogr. Kinesiol. 2017. V. 34. P. 72.
  19. Ivanenko Y.P., Levik Y.S., Talis V.L., Gurfinkel V.S. Human equilibrium on unstable support: The importance of feet-support interaction // Neurosci. Lett. 1997. V. 235. № 3. P. 109.
  20. Kline T.J.B. Psychological testing: A practical approach to design and evaluation. Sage Publications, Thousand Oaks, CA. 2005. 356 p.
  21. Paillard T. Relationship between sport expertise and postural skills // Front. Psychol. 2019. V. 10. P. 1428.
  22. Farenc I., Rougier P., Berger L. The influence of gender and body characteristics on upright stance // Ann. Hum. Biol. 2003. V. 30. № 3. P. 279.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).