Dynamics of TP, HF-, LF- and VLF- Waves of the Cardiointervalogram (in Clinostasis Conditions) of an Elite Ski Racer in the Preparatory, Competitive and Transitional Periods, Depending on the Volume and Intensity of Training Loads

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In order to study the mechanisms of adaptation to loads requiring high endurance, the 27-year-old master of Sports of Russia in cross-country skiing repeatedly recorded a cardiointervalogram (CIG) under clinostasis conditions, estimating TP, absolute power (mc2) of LF-, HF- and VLF-waves and the relative (as a percentage of TP) power of these waves, i.e. LF%, HF% and VLF%. They were compared with the volume (Vkm, Vmin) and intensity (Nhr) of training loads. The volume of loads was maximum in the preparatory period (21 km/day) and it is minimal in the transition period (18 km/day), and their intensity throughout the annual cycle was stable (working pulse – 120–121 beats/min). With the change in the volume of loads, the values of the KIG indicators also changed. So, in the preparatory period, the medians of TP, the power of HF-, LF- and VLF-waves, as well as VLF% increase; in this period, with an increase in the volume of loads (Vkm), the values of VLF% increase. In the competitive period, the medians of TP, the power of HF-, LF- and VLF-waves and VLF% remain at a high level. In the transition period, the median of TP, the power HF-, LF- and VLF-waves, as well as LF% and VLF%, but the median of HF% increases. For the annual cycle, a direct dependence of the median of TP on the volume of loads (Vkm) and the median power of VLF waves on the volume (Vkm) and intensity (Nhr) of the load was revealed. It is postulated that the values of TP, HF-, LF-, and VLF-waves, as well as VLF% (in clinostasis) reflect the influence of the Cholinergic system on the heart, while VLF% probably reflects the intensity of synthesis of non-neuronal heart’s acetylcholine, and the values of LF% and HF% reflect the formation of anxiety in connection with upcoming starts.

Авторлар туралы

D. Kataev

Vyatka State University; Federation of Cross-Country Skiing of the Republic of Tatarstan

Хат алмасуға жауапты Автор.
Email: den.cataev2014@yandex.ru
Russia, Kirov; Russia, Kazan

V. Tsirkin

Kazan State Medical University

Хат алмасуға жауапты Автор.
Email: esbartsirkin@list.ru
Russia, Kazan

N. Zavalin

Kirov State Medical University

Email: trukhinasvetlana@yandex.ru
Russia, Kirov

M. Morozova

Vyatka State University

Email: trukhinasvetlana@yandex.ru
Russia, Kirov

A. Trukhin

Vyatka State University

Email: trukhinasvetlana@yandex.ru
Russia, Kirov

S. Trukhina

Vyatka State University

Хат алмасуға жауапты Автор.
Email: trukhinasvetlana@yandex.ru
Russia, Kirov

Әдебиет тізімі

  1. MacInnis M.J., Gibala M.J. Physiological adaptations to interval training and the role of exercise intensity // J. Physiol. 2017. V. 595. № 9. P. 2915.
  2. D’Souza A., Sharma S., Boyett M.R. CrossTalk opposing view: bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node // J. Physiol. 2015. V. 593. № 8. P. 1749.
  3. Михайлов В.М. Вариабельность ритма сердца (новый взгляд на старую парадигму). Иваново: ООО “Нейрософт”, 2017. 516 с.
  4. de Geus E.J.C., Gianaros P.J., Brindle R.C. et al. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations // Psychophysiology. 2019. V. 56. № 2. P. e13287.
  5. Hayano J., Yuda E. Pitfalls of assessment of autonomic function by heart rate variability // J. Physiol. Anthropol. 2019. V. 38. № 1. P. 3.
  6. Catai A.M., Pastre C.M., Godoy M.F. et al. Heart rate variability: are you using it properly? Standardisation check list of procedures // Braz. J. Phys. Ther. 2020. V. 24. № 2. P. 91.
  7. Perrone M.A., Volterrani M., Manzi V. et al. Heart rate variability modifications in response to different types of exercise training in athletes // J. Sports. Med. Phys. Fitness. 2021. V. 61. № 10. P. 1411.
  8. Schäfer D., Gjerdalen G.F., Solberg E.E. et al. Sex differences in heart rate variability: a longitudinal study in international elite cross-country skiers // Eur. J. Appl. Physiol. 2015. V. 115. № 10. P. 2107.
  9. Гаврилова Е.А. Спорт, стресс, вариабельность: монография. М.: Спорт, 2015. 168 с.
  10. Шлык Н.И., Лебедев А.С., Вершинина О.С. Оценка качества тренировочного процесса у лыжников-гонщиков и биатлонистов по результатам ежедневных исследований вариабельности сердечного ритма // Наука и спорт: современные тенденции. 2019. Т. 7. № 2. С. 92. Shlyk N.I., Lebedev A.S., Vershinina O.S. Assessment of training process quality of cross-country skiers and biathletes by the results of the daily researches of heart rate variability // Science and Sport: Current Trends. 2019. V. 7. № 2. P. 92.
  11. Schmitt L., Bouthiaux S., Millet G.P. Eleven years' monitoring of the world’s most successful male biathlete of the last decade // Int. J. Sports Physiol. Perform 2020. V. 16. № 6. P. 900.
  12. Литвин Ф.Б., Аносов И.П., Асямолов П.О. и др. Сердечный ритм и система микроциркуляции у лыжников в предсоревновательном периоде спортивной подготовки // Вестник Удмуртского университета. Серия Биология. Науки о Земле. 2012. № 1. С. 67. Litvin F.B., Anosov I.P., Asyamolov P.O. et al. Warm rhythm and system of microcirculation at skiers in the precompetitive period of sports preparation // Bulletin of Udmurt University. Series Biology. Earth Sciences. 2012. № 1. Р. 67.
  13. Шлык Н.И. Нормативы вариационного размаха кардиоинтервалов в покое и ортостазе при разных типах регуляции у лыжников-гонщиков в тренировочном процессе // Наука и спорт: современные тенденции. 2021. Т. 9. № 4. С. 35. Shlyk N.I. Standards of the variational range of cardiac intervals at rest and during an orthostatic challenge with different types of regulation in ski racers in the training process // Science and Sport: Current Trends. 2021. V. 9. № 4. Р. 35.
  14. Fazackerley L.F., Fell J.W., Kitic C.M. The effect of an ultra-endurance running race on heart rate variability // Eur. J. Appl. Physiol. 2019. V. 119. № 9. P. 2001.
  15. Pla R., Aubry A., Resseguier N. et al. Training Organization, physiological profile and heart rate variability changes in an open-water world champion // Int. J. Sports. Med. 2019. V. 40. № 8. P. 519.
  16. Tønnessen E., Sylta Ø., Haugen T.A. et al. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performanc // PLoS One. 2014. V. 9. № 7. P. e101796.
  17. Sandbakk Ø., Holmberg H.C. Physiological capabilities and training regimen of elite cross-country skiers: approaching the upper limits of human endurance // Int. J. Sports. Physiol. Perform. 2017. V. 12. № 8. P. 1003.
  18. Solli G.S., Tønnessen E., Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier // Front. Physiol. 2017. V. 8. P. 1069.
  19. Torvik P.Ø., Solli G.S., Sandbakk Ø. Training characteristics of world-class male Long-distance runners // Front. Sports. Act. Living. 2021. V. 3. P. 641389.
  20. Баталов А.Г., Бурдина М.Е. Подходы к моделированию индивидуальных целевых систем соревнований лыжниц-гонщиц в периоды подготовки к олимпийским зимним играм и чемпионатам мира / Материалы Всероссийской научно-практической конференции “Актуальные вопросы подготовки лыжников-гонщиков высокой квалификации” 17– 20 мая 2011 г. Смоленск: СГАФКСТ, 2001. С. 21.
  21. Грушин А.А. Спортивная подготовка высококвалифицированных лыжниц-гонщиц на стадии максимальной реализации спортивных достижений / Учебное пособие для самосоятельной работы студентов. М.: Физическая культура, 2014. 106 с.
  22. Ландырь А.П., Ачкасов Е.Е. Мониторинг частоты сердечных сокращений в управлении тренировочным процессом в физической культуре и спорте. М.: Спорт, 2018. С. 54.
  23. Stöggl T.L., Hertlein M., Brunauer R. et al. Pacing, exercise intensity, and technique by performance level in long-distance cross-country skiing // Front. Physiol. 2020. V. 11. P. 17.
  24. Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? // Int. J. Sports. Physiol. Perform. 2010. V. 5. № 3. P. 276.
  25. West S.W., Clubb J., Torres-Ronda L. et al. More than a metric: how training load is used in elite sport for athlete management // Int. J. Sports. Med. 2021. V. 42. № 4. P. 300.
  26. Calbet J.A., Jensen-Urstad M., van Hall G. et al. Maximal muscular vascular conductances during whole body upright exercise in humans // J. Physiol. 2004. V. 558. № 1. P. 319.
  27. Martin S.A., Hadmaș R.M. Individual adaptation in cross-country skiing based on tracking during training conditions // Sports (Basel). 2019. V. 7. № 9. P. 211.
  28. Tønnessen E., Hisdal J., Ronnestad B.R. Influence of interval training frequency on time-trial performance in elite endurance athletes // Int. J. Environ. Res. Public. Health. 2020. V. 17. № 9. P. 3190.
  29. Стентон Г. Медико-биологическая статистика / Пер. с англ. М.: Практика, 1998. 459 с.
  30. Викулов А.Д., Бочаров М.В., Каунина Д.В., Бойков В.Л. Регуляция сердечной деятельности у спортсменов высокой квалификации // Вестник спортивной науки. 2017. № 2. С. 31. Vikulov A.D., Bocharov M.V., Kaunina D.V., Bojkov V.L. [Regulation of cardiac activity in highly qualified athletes] // Vestnik Sportivnoj Nauki. 2017. № 2. Р. 31.
  31. Kučera M., Hrabovská A. [Cholinergic system of the heart] // Ceska Slov. Farm. 2015. V. 64. № 6. P. 254.
  32. Lewartowski B., Mackiewicz U. The non-neuronal heart’s acetylcholine in health and disease // J. Physiol. Pharmacol. 2015. V. 66. № 6. P. 773.
  33. Roy A., Dakroub M., Tezini G.C. et al. Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions // FASEB J. 2016. V. 30. № 2. P. 688.
  34. Saw E.L., Kakinuma Y., Fronius M., Katare R. The non-neuronal cholinergic system in the heart: A comprehensive review // J. Mol. Cell. Cardiol. 2018. V. 125. P. 129.
  35. Kakinuma Y. Characteristic effects of the cardiac non-neuronal acetylcholine system augmentation on brain functions // Int. J. Mol. Sci. 2021. V. 22. № 2. P. 545.
  36. Bader S., Klein J., Diener M. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium // Eur. J. Pharmacol. 2014. V. 733. P. 23.
  37. Kim G.-M., Woo J.-M. Determinants for Heart Rate Variability in a Normal Korean Population // J. Korean Med. Sci. 2011. V. 26. № 10. P. 1293.
  38. Takabatake N., Nakamura H., Minamihaba O. et al. A nove pathophysiological phenomenon in cachexic patient with chronic obstructive pulmonary disease: the relationship between the circadian rhythm of circulation leptin and very low frequency component of heart rate variability // Am. J. Respir. Crit. Care Med. 2001. V. 163. № 6. P. 1314.
  39. Воронина Г.А., Ефремова Р.И. Особенности вариабельности сердечного ритма юных лыжников в зависимости от периода спортивной подготовки / Вариабельность сердечного ритма: Теоретические аспекты и практическое применение // Материалы V Всерос. симпоз. с междунар. участием, Ижевск, 26–28 октября 2011 г. Ижевск: УдГУ, 2011. С. 235.
  40. Циркин В.И., Трухин А.Н., Трухина С.И. Холин- и моноаминергические трансмиттерные системы в норме и патологии. Киров: ВятГУ, 2020. 292 с.
  41. MacInnis M.J., Gibala M.J. Physiological adaptations to interval training and the role of exercise intensity // J. Physiol. 2017. V. 595. № 9. P. 2915.
  42. Chen C.C.W., Erlich A.T., Hood D.A. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle // Skelet. Muscle. 2018. V. 8. № 1. P. 10.
  43. Granata C., Jamnick N.A., Bishop D.J. Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis // Sports. Med. 2018. V. 48. № 7. P. 1541.
  44. Cheng A.J., Jude B., Lanner J.T. Intramuscular mechanisms of overtraining // Redox. Biol. 2020. V. 35. P. 101480.
  45. Mesquita P.H.C., Vann C.G., Phillips S.V. et al. Skeletal muscle ribosome and mitochondrial biogenesis in response to different exercise training modalities // Front. Physiol. 2021. V. 12. P. 725866.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (459KB)
3.

Жүктеу (61KB)

© Д.А. Катаев, В.И. Циркин, Н.С. Завалин, М.А. Морозова, А.Н. Трухин, С.И. Трухина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>