On Applications of the Hamilton—Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A chemotherapy model for a malignant tumor is considered, and the optimal control (therapy) problem of minimizing the number of tumor cells at a fixed final instant is investigated. In this problem, the value function is calculated, which assigns the value (the optimal achievable result) to each initial state. An optimal feedback (optimal synthesis) is constructed, using which for any initial state ensures the achievement of the corresponding optimal result. The proposed constructions are based on the method of Cauchy characteristics, the Pontryagin maximum principle, and the theory of generalized (minimax/viscosity) solutions of the Hamilton-Jacobi-Bellman equation describing the value function.

作者简介

N. Subbotina

N. N. Krasovskii Institute of Mathematics and Mechanics; Ural Federal University named after the First President of Russia B. N. Yeltsin

编辑信件的主要联系方式.
Email: subb@uran.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 19, Yekaterinburg, 620002

N. Novoselova

N. N. Krasovskii Institute of Mathematics and Mechanics; Ural Federal University named after the First President of Russia B. N. Yeltsin

编辑信件的主要联系方式.
Email: n.g.novoselova@gmail.com
俄罗斯联邦, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 19, Yekaterinburg, 620002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019