Space of Continuous Set-Valued Mappings with Closed Unbounded Values


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a space of continuous set-valued mappings defined on a locally compact space T with a countable base. The values of these mappings are closed (not necessarily bounded) sets in a metric space (X, d(·)) whose closed balls are compact. The space (X, d(·)) is locally compact and separable. Let Y be a countable dense set in X. The distance ρ(A,B) between sets A and B belonging to the family CL(X) of all nonempty closed subsets of X is defined as follows:

\(\rho (A, B) = \sum_{i=1}^\infty\frac{1}{2^i}\frac{|d(y_i, A) - d(y_i, B)|}{1+|d(y_i, A) - d(y_i, B)|},\)
where d(yi,A) is the distance from the point yiY to the set A. This distance is independent of the choice of the set Y, and the function ρ(A,B) is a metric on the space CL(X). The convergence of a sequence of sets An, n ≥ 1, in the metric space (CL(X), ρ(·)) is equivalent to the Kuratowski convergence of this sequence. We prove the completeness and separability of the space (CL(X), ρ(·)) and give necessary and sufficient conditions for the compactness of sets in this space. The space C(T,CL(X)) of all continuous mappings from T to (CL(X), ρ(·)) is endowed with the topology of uniform convergence on compact sets in T. We prove the completeness and separability of the space C(T,CL(X)) and give necessary and sufficient conditions for the compactness of sets in this space. These results are reformulated for the space C(T,CCL(X)), where T = [0, 1], X is a finite-dimensional Euclidean space, and CCL(X) is the space of all nonempty closed convex sets in X with metric ρ(·). This space plays a crucial role in the study of sweeping processes. We give a counterexample showing the significance of the assumption of compactness of closed balls in X.

作者简介

A. Tolstonogov

Matrosov Institute for System Dynamics and Control Theory

编辑信件的主要联系方式.
Email: aatol@icc.ru
俄罗斯联邦, Irkutsk, 664033

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018