On Automorphisms of a Distance-Regular Graph with Intersection Array {69, 56, 10; 1, 14, 60}


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let Γ be a distance-regular graph of diameter 3 with eigenvalues θ0 > θ1 > θ2 > θ3. If θ2 = −1, then the graph Γ3 is strongly regular and the complementary graph \({\bar \Gamma _3}\) is pseudogeometric for pGc3(k, b1/c2). If Γ3 does not contain triangles and the number of its vertices v is less than 800, then Γ has intersection array {69, 56, 10; 1, 14, 60}. In this case Γ3 is a graph with parameters (392, 46, 0, 6) and \({\bar \Gamma _2}\) is a strongly regular graph with parameters (392, 115, 18, 40). Note that the neighborhood of any vertex in a graph with parameters (392, 115, 18, 40) is a strongly regular graph with parameters (115, 18, 1, 3) and its existence is unknown. In this paper, we find possible automorphisms of these strongly regular graphs and automorphisms of a hypothetical distance-regular graph with intersection array {69, 56, 10; 1, 14, 60}. In particular, it is proved that the latter graph is not ar-ctransitive.

作者简介

A. Makhnev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

编辑信件的主要联系方式.
Email: makhnev@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620002

M. Nirova

Krasovskii Institute of Mathematics and Mechanics; Kabardino-Balkar State University

编辑信件的主要联系方式.
Email: nirova_m@mail.ru
俄罗斯联邦, Yekaterinburg, 620990; Nalchik, 360004 Kabardino-Balkar Republic

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018