Bounded Discrete Holomorphic Functions on the Hyperbolic Plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that, for the discretization of complex analysis introduced earlier by S. P. Novikov and the present author, there exists a rich family of bounded discrete holomorphic functions on the hyperbolic (Lobachevsky) plane endowed with a triangulation by regular triangles whose vertices have even valence. Namely, it is shown that every discrete holomorphic function defined in a bounded convex domain can be extended to a bounded discrete holomorphic function on the whole hyperbolic plane so that the Dirichlet energy be finite.

作者简介

I. Dynnikov

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dynnikov@mech.math.msu.su
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018