On the Voitkunskii Amfilokhiev Pavlovskii Model of Motion of Aqueous Polymer Solutions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the mathematical properties of the model of motion of aqueous polymer solutions (Voitkunskii, Amfilokhiev, Pavlovskii, 1970) and its modifications in the limiting case of small relaxation times (Pavlovskii, 1971). In both cases, we examine plane unsteady laminar flows. In the first case, the properties of the flows are similar to those of the flow of an ordinary viscous fluid. In the second case, there may exist weak discontinuities that are preserved during the motion. We also address the steady flow problem for a dilute aqueous polymer solution moving in a cylindrical tube under a longitudinal pressure gradient. In this case, a flow with rectilinear trajectories (an analog of the classical Poiseuille flow) is possible. However, in contrast to the latter, the pressure in this flow depends on all three spatial variables.

作者简介

V. Pukhnachev

Lavrentyev Institute of Hydrodynamics; Novosibirsk State University

编辑信件的主要联系方式.
Email: pukhnachev@gmail.com
俄罗斯联邦, pr. Lavrent’eva 15, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

O. Frolovskaya

Lavrentyev Institute of Hydrodynamics; Novosibirsk State University

Email: pukhnachev@gmail.com
俄罗斯联邦, pr. Lavrent’eva 15, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018