Solution of the deconvolution problem in the general statement


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The deconvolution problem, which arises in the description of well testing processes, is formulated in the form of a Volterra equation of the first kind with discontinuous input data (the kernel is the flow rate and the right-hand side is the pressure change) characterized by large measurement errors. In addition, the solution of this equation has multiscale behavior in its domain. In this situation, the traditional solution algorithms for Volterra equations, as a rule, do not provide satisfactory results. To solve the problem, we use the variational regularization methods and construct a function basis (a system of exponents), which allows us to take into account in the algorithm all a priori constraints known for the desired solution. As a result, we form a family of approximate solutions that satisfies the conditions of smoothness and exactness required for the interpretation of well tests. For the constructed regularizing algorithms, we formulate convergence theorems and describe the details of numerical implementation.

作者简介

V. Vasin

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

编辑信件的主要联系方式.
Email: vasin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620000

G. Skorik

Krasovskii Institute of Mathematics and Mechanics

Email: vasin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017