A new kth derivative estimate for exponential sums via Vinogradov’s mean value


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov’s mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new kth derivative estimate. Roughly speaking, this improves the van der Corput estimate for k ≥ 4. Various corollaries are given, showing for example that \(\zeta \left( {\sigma + it} \right){ \ll _\varepsilon }{t^{{{\left( {1 - \sigma } \right)}^{3/2}}/2 + \varepsilon }}\) for t ≥ 2 and 0 ≤ σ ≤ 1, for any fixed ε > 0.

作者简介

D. Heath-Brown

Mathematical Institute

编辑信件的主要联系方式.
Email: rhb@maths.ox.ac.uk
英国, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017