A new kth derivative estimate for exponential sums via Vinogradov’s mean value
- 作者: Heath-Brown D.R.1
-
隶属关系:
- Mathematical Institute
- 期: 卷 296, 编号 1 (2017)
- 页面: 88-103
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174203
- DOI: https://doi.org/10.1134/S0081543817010072
- ID: 174203
如何引用文章
详细
We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov’s mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new kth derivative estimate. Roughly speaking, this improves the van der Corput estimate for k ≥ 4. Various corollaries are given, showing for example that \(\zeta \left( {\sigma + it} \right){ \ll _\varepsilon }{t^{{{\left( {1 - \sigma } \right)}^{3/2}}/2 + \varepsilon }}\) for t ≥ 2 and 0 ≤ σ ≤ 1, for any fixed ε > 0.
作者简介
D. Heath-Brown
Mathematical Institute
编辑信件的主要联系方式.
Email: rhb@maths.ox.ac.uk
英国, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG
补充文件
