A PTAS for Min-k-SCCP in Euclidean space of arbitrary fixed dimension


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the minimum weight k-size cycle cover problem (Min-k-SCCP), which consists in partitioning a complete weighted digraph into k vertex-disjoint cycles of minimum total weight. This problem is a generalization of the known traveling salesman problem and a special case of the classical vehicle routing problem. It is known that Min-k-SCCP is strongly NP-hard in the general case and preserves its intractability even in the geometric statement. For Euclidean Min-k-SCCP in ℝd with k = O(log n), we construct a polynomialtime approximation scheme (PTAS), which generalizes the approach proposed earlier for planar Min-2-SCCP. For each fixed c > 1 the scheme finds a (1 + 1/c)-approximate solution in time \(O\left( {{n^{O\left( d \right)}}{{\left( {\log n} \right)}^{{{\left( {O\left( {\sqrt {dc} } \right)} \right)}^{^{d - 1}}}}}} \right)\).

Авторлар туралы

E. Neznakhina

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Хат алмасуға жауапты Автор.
Email: eneznakhina@yandex.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016