Solvability of a Mixed Boundary Value Problem for a Stationary Reaction-Convection-Diffusion Model


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the solvability of an inhomogeneous mixed boundary value problem for a stationary reaction-convection-diffusion model. Such models are often used in science and engineering for the description and analysis of various processes of heat and mass transfer. We focus on the issues of solvability of the boundary value problem in different functional spaces and on the stability of the solution and its continuous dependence on the input data in natural metrics. The peculiarity of the problem consists in the inhomogeneity and irregularity of the mixed boundary data. These boundary data, in general, cannot be continued inside the domain so that the continuation is sufficiently smooth and can be used in the known way to transform the problem to a problem with homogeneous boundary data. To prove the solvability of the problem, we use the Lax-Milgram theorem. Estimates for the norms of the solution follow from the same theorem. The cases where the solution operator is completely continuous are also established. The properties of the solution of the direct problem found in this study will be used later to solve inverse problems.

Авторлар туралы

A. Korotkii

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Хат алмасуға жауапты Автор.
Email: korotkii@imm.uran.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620000

A. Litvinenko

Ural Federal University

Хат алмасуға жауапты Автор.
Email: a.litvinenko114@yandex.ru
Ресей, Yekaterinburg, 620000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019