An Inverse Theorem for an Inequality of Kneser


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let G = (G, +) be a compact connected abelian group, and let μG denote its probability Haar measure. A theorem of Kneser (generalising previous results of Macbeath, Raikov, and Shields) establishes the bound μG(A + B) ≥ min(μG(A) + μG(B), 1) whenever A and B are compact subsets of G, and A + B:= {a + b: aA, bB} denotes the sumset of A and B. Clearly one has equality when μG(A) + μG(B) ≥ 1. Another way in which equality can be obtained is when A = φ−1(I) and B = φ−1(J) for some continuous surjective homomorphism φ: G → ℝ/ℤ and compact arcs I, J ⊂ ℝ/ℤ. We establish an inverse theorem that asserts, roughly speaking, that when equality in the above bound is almost attained, then A and B are close to one of the above examples. We also give a more “robust” form of this theorem in which the sumset A + B is replaced by the partial sumset A +εB:= {1A * 1B ≥ ε} for some small ε > 0. In a subsequent paper with Joni Teräväinen, we will apply this latter inverse theorem to establish that certain patterns in multiplicative functions occur with positive density.

Авторлар туралы

Terence Tao

Department of Mathematics

Хат алмасуға жауапты Автор.
Email: tao@math.ucla.edu
АҚШ, 405 Hilgard Ave, Los Angeles, CA, 90095

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018