Cm Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in the Plane
- Авторы: Bagapsh A.O.1,2, Fedorovskiy K.Y.1,3
-
Учреждения:
- Bauman Moscow State Technical University
- Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Mathematics and Mechanics Faculty
- Выпуск: Том 301, № 1 (2018)
- Страницы: 1-10
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175537
- DOI: https://doi.org/10.1134/S0081543818040016
- ID: 175537
Цитировать
Аннотация
This paper is a brief survey of the recent results in problems of approximating functions by solutions of homogeneous elliptic systems of PDEs on compact sets in the plane in the norms of Cm spaces, m ≥ 0. We focus on general second-order systems. For such systems the paper complements the recent survey by M. Mazalov, P. Paramonov, and K. Fedorovskiy (2012), where the problems of Cm approximation of functions by holomorphic, harmonic, and polyanalytic functions as well as by solutions of homogeneous elliptic PDEs with constant complex coefficients were considered.
Об авторах
A. Bagapsh
Bauman Moscow State Technical University; Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Автор, ответственный за переписку.
Email: a.bagapsh@gmail.com
Россия, Vtoraya Baumanskaya ul. 5/1, Moscow, 105005; ul. Vavilova 40, Moscow, 119333
K. Fedorovskiy
Bauman Moscow State Technical University; Mathematics and Mechanics Faculty
Email: a.bagapsh@gmail.com
Россия, Vtoraya Baumanskaya ul. 5/1, Moscow, 105005; Universitetskii pr. 28, Peterhof, St. Petersburg, 198504
Дополнительные файлы
