On some properties of finite sums of ridge functions defined on convex subsets of ℝn
- Авторы: Konyagin S.V.1, Kuleshov A.A.1
-
Учреждения:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Выпуск: Том 293, № 1 (2016)
- Страницы: 186-193
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173726
- DOI: https://doi.org/10.1134/S0081543816040131
- ID: 173726
Цитировать
Аннотация
Necessary conditions are established for the continuity of finite sums of ridge functions defined on convex subsets E of the space Rn. It is shown that under some constraints imposed on the summed functions ϕi, in the case when E is open, the continuity of the sum implies the continuity of all ϕi. In the case when E is a convex body with nonsmooth boundary, a logarithmic estimate is obtained for the growth of the functions ϕi in the neighborhoods of the boundary points of their domains of definition. In addition, an example is constructed that demonstrates the accuracy of the estimate obtained.
Об авторах
S. Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences
Автор, ответственный за переписку.
Email: konyagin@mi.ras.ru
Россия, ul. Gubkina 8, Moscow, 119991
A. Kuleshov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: konyagin@mi.ras.ru
Россия, ul. Gubkina 8, Moscow, 119991
Дополнительные файлы
