On Higher Massey Products and Rational Formality for Moment—Angle Manifolds over Multiwedges


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We prove that certain conditions on multigraded Betti numbers of a simplicial complex K imply the existence of a higher Massey product in the cohomology of a moment-angle complex \({{\cal Z}_K}\), and this product contains a unique element (a strictly defined product). Using the simplicial multiwedge construction, we find a family \({\cal F}\) of polyhedral products being smooth closed manifolds such that for any l, r ≥ 2 there exists an l-connected manifold \(M \in {\cal F}\) with a nontrivial strictly defined r-fold Massey product in H*(M). As an application to homological algebra, we determine a wide class of triangulated spheres K such that a nontrivial higher Massey product of any order may exist in the Koszul homology of their Stanley–Reisner rings. As an application to rational homotopy theory, we establish a combinatorial criterion for a simple graph Γ to provide a (rationally) formal generalized moment-angle manifold \(\mathcal{Z}_{P}^{J}=\left(\underline{D}^{2 j_{i}}, \underline{S}^{2 j_{i}-1}\right)^{\partial P^{*}}\)J = (j1,…,jm), over a graph-associahedron P = PΓ, and compute all the diffeomorphism types of formal moment-angle manifolds over graph-associahedra.

Авторлар туралы

Ivan Limonchenko

National Research University Higher School of Economics

Хат алмасуға жауапты Автор.
Email: ilimonchenko@hse.ru
Ресей, ul. Myasnitskaya 20, Moscow, 101000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019