On Applications of the Hamilton—Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A chemotherapy model for a malignant tumor is considered, and the optimal control (therapy) problem of minimizing the number of tumor cells at a fixed final instant is investigated. In this problem, the value function is calculated, which assigns the value (the optimal achievable result) to each initial state. An optimal feedback (optimal synthesis) is constructed, using which for any initial state ensures the achievement of the corresponding optimal result. The proposed constructions are based on the method of Cauchy characteristics, the Pontryagin maximum principle, and the theory of generalized (minimax/viscosity) solutions of the Hamilton-Jacobi-Bellman equation describing the value function.

Sobre autores

N. Subbotina

N. N. Krasovskii Institute of Mathematics and Mechanics; Ural Federal University named after the First President of Russia B. N. Yeltsin

Autor responsável pela correspondência
Email: subb@uran.ru
Rússia, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 19, Yekaterinburg, 620002

N. Novoselova

N. N. Krasovskii Institute of Mathematics and Mechanics; Ural Federal University named after the First President of Russia B. N. Yeltsin

Autor responsável pela correspondência
Email: n.g.novoselova@gmail.com
Rússia, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 19, Yekaterinburg, 620002

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019