An Example Concerning Set Addition in \(\mathbb{F}_2^n\)
- Autores: Green B.1, Kane D.2
-
Afiliações:
- Mathematical Institute
- Department of Mathematics
- Edição: Volume 303, Nº 1 (2018)
- Páginas: 105-108
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175664
- DOI: https://doi.org/10.1134/S0081543818080096
- ID: 175664
Citar
Resumo
We construct sets A and B in a vector space over \(\mathbb{F}\) with the property that A is “statistically” almost closed under addition by B in the sense that a + b almost always lies in A when a ∈ A and b ∈ B, but which is extremely far from being “combinatorially” almost closed under addition by B: if A′⊂ A, B′⊂ B and A′ + B′ is comparable in size to A′, then |B′| ⪅ |B|1/2.
Sobre autores
Ben Green
Mathematical Institute
Autor responsável pela correspondência
Email: ben.green@maths.ox.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Woodstock Road, Oxford, OX2 6GG
Daniel Kane
Department of Mathematics
Autor responsável pela correspondência
Email: dakane@ucsd.edu
Estados Unidos da América, 9500 Gilman Drive, La Jolla, CA, 92093-0112
Arquivos suplementares
