Hermite—Padé Approximants of the Mittag-Leffler Functions
- Autores: Starovoitov A.P.1
-
Afiliações:
- Francisk Skorina Gomel State University
- Edição: Volume 301, Nº 1 (2018)
- Páginas: 228-244
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175586
- DOI: https://doi.org/10.1134/S0081543818040181
- ID: 175586
Citar
Resumo
The convergence rate of type II Hermite–Padé approximants for a system of degenerate hypergeometric functions {1F1(1, γ; λjz)}j=1k is found in the case when the numbers {λj}j=1k are the roots of the equation λk = 1 or real numbers and \(\gamma\in\mathbb{C}\;\backslash\left\{0,-1,-2,...\right\}\). More general statements are obtained for approximants of this type (including nondiagonal ones) in the case of k = 2. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.
Sobre autores
A. Starovoitov
Francisk Skorina Gomel State University
Autor responsável pela correspondência
Email: svoitov@gsu.by
Belarus, Savetskaya vul. 104, Gomel, 246019
Arquivos suplementares
