On Graphs in Which Neighborhoods of Vertices Are Strongly Regular with Parameters (85,14,3,2) or (325,54,3,10)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

J. Koolen posed the problem of studying distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with nonprincipal eigenvalue at most t for a given positive integer t. This problem was solved earlier for t = 3. In the case t = 4, the problem was reduced to studying graphs in which neighborhoods of vertices have parameters (352,26,0,2), (352,36,0,4), (243,22,1,2), (729,112,1,20), (204,28,2,4), (232,33,2,5), (676,108,2,20), (85,14,3,2), or (325,54,3,10). In the present paper, we prove that a distance-regular graph in which neighborhoods of vertices are strongly regular with parameters (85, 14, 3, 2) or (325, 54, 3, 10) has intersection array {85, 70, 1; 1, 14, 85} or {325, 270, 1; 1, 54, 325}. In addition, we find possible automorphisms of a graph with intersection array {85, 70, 1; 1, 14, 85}.

Авторлар туралы

M. Isakova

Kabardino-Balkarian State University

Хат алмасуға жауапты Автор.
Email: isakova2206@mail.ru
Ресей, Nalchik, Kabardino-Balkar Republic, 360004

A. Makhnev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Email: isakova2206@mail.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620002

A. Tokbaeva

Kabardino-Balkarian State University

Email: isakova2206@mail.ru
Ресей, Nalchik, Kabardino-Balkar Republic, 360004

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017