A strengthening of a theorem of Bourgain and Kontorovich. V


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is proved that the denominators of finite continued fractions all of whose partial quotients belong to an arbitrary finite alphabet A with parameter δ > 0.7807... (i.e., such that the set of infinite continued fractions with partial quotients from this alphabet is of Hausdorff dimension δ with δ > 0.7807... ) contain a positive proportion of positive integers. Earlier, a similar theorem has been obtained only for alphabets with somewhat greater values of δ. Namely, the first result of this kind for an arbitrary finite alphabet with δ > 0.9839... is due to Bourgain and Kontorovich (2011). Then, in 2013, D.A. Frolenkov and the present author proved such a theorem for an arbitrary finite alphabet with δ > 0.8333.... The preceding result of 2015 of the present author concerned an arbitrary finite alphabet with δ > 0.7862....

Авторлар туралы

I. Kan

Moscow Aviation Institute (National Research University)

Хат алмасуға жауапты Автор.
Email: igor.kan@list.ru
Ресей, Volokolamskoe sh. 4, Moscow, 125993

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017