On intersections of abelian and nilpotent subgroups in finite groups. I
- Autores: Zenkov V.I.1,2
-
Afiliações:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Edição: Volume 295, Nº Suppl 1 (2016)
- Páginas: 174-177
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174103
- DOI: https://doi.org/10.1134/S0081543816090182
- ID: 174103
Citar
Resumo
Let A be an abelian subgroup of a finite group G, and let B be a nilpotent subgroup of G. If G is solvable, then we prove that it contains an element g such that A ∩ Bg ≤ F(G), where F(G) is the Fitting subgroup of G. If G is not solvable, we prove that a counterexample of minimal order to the conjecture that A ∩ Bg ≤ F(G) for some element g from G is an almost simple group.
Palavras-chave
Sobre autores
V. Zenkov
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Autor responsável pela correspondência
Email: zenkov@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620000
Arquivos suplementares
