On Fixed Points of Multivalued Mappings in Spaces with a Vector-Valued Metric


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nadler’s theorem on a fixed point of a multivalued mapping is extended to spaces with a vector-valued metric. A vector-valued metric is understood as a mapping with the properties of a usual metric and values in a linear normed ordered space. We prove an analog of Nadler’s theorem and apply it to a system of integral inclusions in a space of summable functions. Then we study a boundary value problem with multivalued conditions for systems of functional differential inclusions by means of reduction to a system of integral inclusions. Conditions for the existence of solutions are obtained and estimates of the solutions are given. The existence conditions do not contain the convexity requirement for the values of the multivalued function generating a Nemytskii operator.

作者简介

E. Zhukovskiy

Derzhavin Tambov State University; People’s Friendship University of Russia

编辑信件的主要联系方式.
Email: zukovskys@mail.ru
俄罗斯联邦, Tambov, 392000; Moscow, 117198

E. Panasenko

Derzhavin Tambov State University

编辑信件的主要联系方式.
Email: panlena_t@mail.ru
俄罗斯联邦, Tambov, 392000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019