On Fixed Points of Multivalued Mappings in Spaces with a Vector-Valued Metric


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Nadler’s theorem on a fixed point of a multivalued mapping is extended to spaces with a vector-valued metric. A vector-valued metric is understood as a mapping with the properties of a usual metric and values in a linear normed ordered space. We prove an analog of Nadler’s theorem and apply it to a system of integral inclusions in a space of summable functions. Then we study a boundary value problem with multivalued conditions for systems of functional differential inclusions by means of reduction to a system of integral inclusions. Conditions for the existence of solutions are obtained and estimates of the solutions are given. The existence conditions do not contain the convexity requirement for the values of the multivalued function generating a Nemytskii operator.

Авторлар туралы

E. Zhukovskiy

Derzhavin Tambov State University; People’s Friendship University of Russia

Хат алмасуға жауапты Автор.
Email: zukovskys@mail.ru
Ресей, Tambov, 392000; Moscow, 117198

E. Panasenko

Derzhavin Tambov State University

Хат алмасуға жауапты Автор.
Email: panlena_t@mail.ru
Ресей, Tambov, 392000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019