Polynomial Lie Algebras and Growth of Their Finitely Generated Lie Subalgebras
- Авторлар: Millionshchikov D.V.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 302, № 1 (2018)
- Беттер: 298-314
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175646
- DOI: https://doi.org/10.1134/S0081543818060159
- ID: 175646
Дәйексөз келтіру
Аннотация
The concept of polynomial Lie algebra of finite rank was introduced by V. M. Buchstaber in his studies of new relationships between hyperelliptic functions and the theory of integrable systems. In this paper we prove the following theorem: the Lie subalgebra generated by the frame of a polynomial Lie algebra of finite rank has at most polynomial growth. In addition, important examples of polynomial Lie algebras of countable rank are considered in the paper. Such Lie algebras arise in the study of certain hyperbolic partial differential equations, as well as in the construction of self-similar infinite-dimensional Lie algebras (such as the Fibonacci algebra).
Авторлар туралы
D. Millionshchikov
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: million@mech.math.msu.su
Ресей, ul. Gubkina 8, Moscow, 119991
Қосымша файлдар
