One-Sided Integral Approximations of the Generalized Poisson Kernel by Trigonometric Polynomials


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the generalized Poisson kernel Πq,α = cos(απ/2)P + sin(απ/2)Q with q ∈ (−1, 1) and α ∈ ℝ, which is a linear combination of the Poisson kernel \(P(t) = 1/2 + \sum\nolimits_{k = 1}^\infty {{q^k}} \cos kt\)and the conjugate Poisson kernel \(Q(t) = \sum\nolimits_{k = 1}^\infty {{q^k}} \sin kt\). The values of the best integral approximation to the kernel Πq,α from below and from above by trigonometric polynomials of degree not exceeding a given number are found. The corresponding polynomials of the best one-sided approximation are obtained.

Sobre autores

A. Babenko

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: babenko@imm.uran.ru
Rússia, Yekaterinburg, 620990

T. Naum

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Email: babenko@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018