On automorphisms of distance-regular graphs with intersection arrays {2r + 1, 2r − 2, 1; 1, 2, 2r + 1}


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let Γ be an antipodal graph with intersection array {2r+1, 2r−2, 1; 1, 2, 2r+1}, where 2r(r + 1) ≤ 4096. If 2r + 1 is a prime power, then Mathon’s scheme provides the existence of an arc-transitive graph with this intersection array. Note that 2r + 1 is not a prime power only for r ∈ {7, 17, 19, 22, 25, 27, 31, 32, 37, 38, 42, 43}. We study automorphisms of hypothetical distance-regular graphs with the specified values of r. The cases r ∈ {7, 17, 19} were considered earlier. We prove that, if Γ is a vertex-symmetric graph with intersection array {2r + 1, 2r − 2, 1; 1, 2, 2r +1}, 2r + 1 is not a prime power, and r ≤ 43, then r = 25, 27, or 31.

Негізгі сөздер

Авторлар туралы

I. Belousov

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Хат алмасуға жауапты Автор.
Email: i_belousov@mail.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620002

A. Makhnev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Email: i_belousov@mail.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620002

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017