Convergence of integrable operators affiliated to a finite von Neumann algebra


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the Banach space L1(M, τ) of operators integrable with respect to a tracial state τ on a von Neumann algebra M, convergence is analyzed. A notion of dispersion of operators in L2(M, τ) is introduced, and its main properties are established. A convergence criterion in L2(M, τ) in terms of the dispersion is proposed. It is shown that the following conditions for XL1(M, τ) are equivalent: (i) τ(X) = 0, and (ii) ‖I + zX1 ≥ 1 for all z ∈ C. A.R. Padmanabhan’s result (1979) on a property of the norm of the space L1(M, τ) is complemented. The convergence in L2(M, τ) of the imaginary components of some bounded sequences of operators from M is established. Corollaries on the convergence of dispersions are obtained.

Авторлар туралы

A. Bikchentaev

Kazan Federal University

Хат алмасуға жауапты Автор.
Email: Airat.Bikchentaev@kpfu.ru
Ресей, ul. Kremlevskaya 18, Kazan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016