On the congruence kernel for simple algebraic groups


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper contains several results about the structure of the congruence kernel C(S)(G) of an absolutely almost simple simply connected algebraic group G over a global field K with respect to a set of places S of K. In particular, we show that C(S)(G)) is always trivial if S contains a generalized arithmetic progression. We also give a criterion for the centrality of C(S)(G) in the general situation in terms of the existence of commuting lifts of the groups G(Kv) for vS in the S-arithmetic completion Ĝ(S). This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if K is a number field and G is K-isotropic, then C(S)(G) as a normal subgroup of Ĝ(S) is almost generated by a single element.

Авторлар туралы

Gopal Prasad

Department of Mathematics

Хат алмасуға жауапты Автор.
Email: gprasad@umich.edu
АҚШ, Ann Arbor, MI, 48109-1043

Andrei Rapinchuk

Department of Mathematics

Email: gprasad@umich.edu
АҚШ, Charlottesville, VA, 22904-4137

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016