A boundary value problem for a second-order nonlinear equation with delta-like potential
- Авторлар: Mukminov F.K.1, Gadyl’shin T.R.2
-
Мекемелер:
- Bashkir State University
- Ufa State Aviation Technical University
- Шығарылым: Том 292, № Suppl 1 (2016)
- Беттер: 216-230
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173367
- DOI: https://doi.org/10.1134/S0081543816020188
- ID: 173367
Дәйексөз келтіру
Аннотация
A Dirichlet nonlinear problem for a second-order equation is considered on an interval. The problem is perturbed by a delta-like potential ε−1Q(ε−1x), where the function Q(ξ) is compactly supported and 0 < ε ≪ 1. A solution of this boundary value problem is constructed with accuracy up to O(ε) with the use of the method of matched asymptotic expansions. The obtained asymptotic approximation is validated by means of the fixed-point theorem. All types of boundary conditions are considered for a linear boundary value problem.
Негізгі сөздер
Авторлар туралы
F. Mukminov
Bashkir State University
Хат алмасуға жауапты Автор.
Email: mfkh@rambler.ru
Ресей, ul. Zaki Validi 32, Ufa, 450076
T. Gadyl’shin
Ufa State Aviation Technical University
Email: mfkh@rambler.ru
Ресей, ul. K. Marksa 12, Ufa, 450008
Қосымша файлдар
