Optimal Policies in the Dasgupta—Heal—Solow—Stiglitz Model under Nonconstant Returns to Scale


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper offers a complete mathematically rigorous analysis of the welfare-maximizing capital investment and resource depletion policies in the Dasgupta—Heal—Solow—Stiglitz model with capital depreciation and any returns to scale. We establish a general existence result and show that an optimal admissible policy may not exist if the output elasticity of the resource equals one. We characterize the optimal policies by applying an appropriate version of the Pontryagin maximum principle for infinite-horizon optimal control problems. We also discuss general methodological pitfalls arising in infinite-horizon optimal control problems for economic growth models, which are not paid due attention in the economic literature so that the results presented there often seem not to be rigorously justified. We finish the paper with an economic interpretation and a discussion of the welfare-maximizing policies.

作者简介

Sergey Aseev

Steklov Mathematical Institute of Russian Academy of Sciences; International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1

编辑信件的主要联系方式.
Email: aseev@mi-ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991; Laxenburg, A-2361

Konstantin Besov

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kbesov@mi-ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

Serguei Kaniovski

Austrian Institute of Economic Research (WIFO)

编辑信件的主要联系方式.
Email: serguei.kaniovski@wifo.ac.at
奥地利, Arsenal, Objekt 20, Vienna, 1030

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019