Properly discontinuous group actions on affine homogeneous spaces
- Autores: Tomanov G.1
-
Afiliações:
- Institut Camille Jordan
- Edição: Volume 292, Nº 1 (2016)
- Páginas: 260-271
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173501
- DOI: https://doi.org/10.1134/S008154381601017X
- ID: 173501
Citar
Resumo
Let G be a real algebraic group, H ≤ G an algebraic subgroup containing a maximal reductive subgroup of G, and Γ a subgroup of G acting on G/H by left translations. We conjecture that Γ is virtually solvable provided its action on G/H is properly discontinuous and ΓG/H is compact, and we confirm this conjecture when G does not contain simple algebraic subgroups of rank ≥2. If the action of Γ on G/H (which is isomorphic to an affine linear space An) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for n ≤ 5.
Palavras-chave
Sobre autores
George Tomanov
Institut Camille Jordan
Autor responsável pela correspondência
Email: tomanov@math.univ-lyon1.fr
França, 43 Bld. du 11 Novembre 1918, Villeurbanne Cedex, 69622
Arquivos suplementares
