Specific peripheral markers of chronic stress load in the pathogenesis of depression: a clinical study
- 作者: Druzhkova T.A.1, Zhanina M.Y.1,2, Bryzgalova Y.E.1, Popova S.B.1, Guekht A.B.1,3, Gulyaeva N.V.1,2
-
隶属关系:
- Moscow Research and Clinical Center for Neuropsychiatry
- Institute of Higher Nervous Activity and Neurophysiology, RAS
- Pirogov Russian National Research Medical University
- 期: 卷 75, 编号 6 (2025)
- 页面: 695-706
- 栏目: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0044-4677/article/view/351756
- DOI: https://doi.org/10.31857/S0044467725060039
- ID: 351756
如何引用文章
详细
Chronic stress, which causes disruption of brain and peripheral mechanisms of long-term adaptation, plays a key role in the development of affective disorders. Disruption of adaptive mechanisms manifests itself in the form of excessive and/or negative reactions to stressful situations. The aim of this study was to deepen the understanding of the involvement of chronic stress in the pathogenesis of depression by comparing psychometric and peripheral biochemical parameters in patients with depression who experience or do not experience chronic stress, in order to identify specific markers of these conditions and potential therapeutic targets. The study included 324 individuals (224 women, 80 men) with unipolar depressive disorder, 187of whom had experienced chronic stress during the year prior to testing. It has been shown that patients with depression and concomitant chronic stress have a specific biochemical and immunological profile that reflects the influence of chronic stress on the brain’s regulation of adaptive mechanisms. In particular, the depletion of adaptive systems (hypothalamic-pituitary-adrenocortical, immune) is manifested in a significantly lower level of free cortisol in saliva and lymphocytes in the blood, while the level of the active form of vitamin D in blood serum, which has neuroprotective, anti-inflammatory, and antioxidant effects, decreases. The elevated folate levels found in patients with chronic stress may reflect disturbances in their metabolism and interaction with vitamin D metabolism. A mathematical model has been developed to assess the likelihood of developing depression associated with chronic stress, according to which a combination of low levels of free cortisol in saliva, blood lymphocytes, the active form of vitamin D, and high levels of vitamin B9 in blood serum may be risk factors for the development of depressive symptoms in conditions of chronic stress. At a cutoff point of 0.75, the sensitivity of the model was 78% and the specificity was 71%. The results obtained not only reflect the neurohumoral and immune mechanisms at the intersection of chronic stress and mood disorders, but may also serve as a basis for the development of more effective treatment methods and strategies for the prevention of depressive states.
作者简介
T. Druzhkova
Moscow Research and Clinical Center for Neuropsychiatry
编辑信件的主要联系方式.
Email: nata_gul@ihna.ru
Moscow, Russia
M. Zhanina
Moscow Research and Clinical Center for Neuropsychiatry; Institute of Higher Nervous Activity and Neurophysiology, RAS
Email: nata_gul@ihna.ru
Moscow, Russia; Moscow, Russia
Y. Bryzgalova
Moscow Research and Clinical Center for Neuropsychiatry
Email: nata_gul@ihna.ru
Moscow, Russia
S. Popova
Moscow Research and Clinical Center for Neuropsychiatry
Email: nata_gul@ihna.ru
Moscow, Russia
A. Guekht
Moscow Research and Clinical Center for Neuropsychiatry; Pirogov Russian National Research Medical University
Email: nata_gul@ihna.ru
Moscow, Russia; Moscow, Russia
N. Gulyaeva
Moscow Research and Clinical Center for Neuropsychiatry; Institute of Higher Nervous Activity and Neurophysiology, RAS
Email: nata_gul@ihna.ru
Moscow, Russia; Moscow, Russia
参考
- Тарабрина Н.В. Практикум по психологии посттравматического стресса. Ред. Тарабрина Н.В. СПБ: Питер, 2001. 272 с.
- Ханин Ю.Л. Краткое руководство к применению шкалы реактивной личностной тревожности Ч.Д. Спилберга Ред. Ханин Ю.Л. Ленинград: ЛНИИФК. 1976. 40 с.
- Adela M.C., Cristian P., Constantin A.C., Cristina A., Mihnea C.M., Diana M.P. et al. Severe Vitamin D Deficiency – A Possible Cause of Resistance to Treatment in Psychiatric Pathology. Medicina. 2023. 59 (12): 2056.
- Ahmed T., Michael B., Powner M.Q., Panayiotis A.K. Rapid optical determination of salivary cortisol responses in individuals undergoing physiological and psychological stress. Sci Rep. 2024. 14 (1): 31578.
- Ahmed T., Qassem M., Kyriacou P.A. Physiological monitoring of stress and major depression: A review of the current monitoring techniques and considerations for the future. 2022. Biomed. Signal. Process. Control. 75: 103591.
- Ahmed T., Qassem M., Kyriacou P.A. Measuring stress: a review of the current cortisol and dehydroepiandrosterone (DHEA) measurement techniques and considerations for the future of mental health monitoring. Stress. 2023 26 (1): 29–42.
- Andrus B.M., Blizinsky K., Vedell P.T., Dennis K., Shukla P.K., Schaffer D.J. et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry. 2012. 17: 49–61.
- Ashley L.R., Jeffrey G.T., Aldo B.L., Jenny F., Carolina D.M., Tao-Yiao J.W., Terrence D. Factors promoting vulnerability to dysregulated stress reactivity and stress-related disease. J. Neuroendocrinol. 2018. 30 (10): e12641.
- Beck A.T., Steer R.A., Brown G.K. Beck Depression Inventory-II (BDI-II). Psychological Corporation: San Antonio. 1996.
- Bender A., Hagan K.E., Kingston N. The Association of Folate and Depression: A Meta-Analysis. J. Psychiatr. Res. 2017. 95: 9–18.
- Bertollo A.G., Grolli E.R., Plissari E.M., Gasparin A.V., Quevedo J., Réus G.Z. et al. Stress and serum cortisol levels in major depressive disorder: A cross-sectional study. AIMS Neurosci. 2020. 7: 459–469.
- Booij S.H., Wigman J.T., Jacobs N., Thiery E., Derom C., Wichers M., Oravecz Z. Cortisol dynamics in depression: Application of a continuous-time process model. Psychoneuroendocrinology. 2020. 115: 104598.
- Calvello R., Cianciulli A., Nicolardi G., De Nuccio F., Giannotti L., Salvatore R. et al. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. J. Neuroimmune Pharmacol. 2017. 12: 327–339.
- Casey P. Adjustment disorder: epidemiology, diagnosis and treatment. CNS Drugs. 2009. 23 (11): 927–938.
- Cohen S., Kamarck T., Mermelstein R. A global measure of perceived stress. Journal of Health and Social Behavior. 1983. 24 (4): 385–396.
- Deuschle M., Luppa P., Gilles M., Hamann B., Heuser I. Antidepressant treatment and dehydroepiandrosterone sulfate: different effects of amitriptyline and paroxetine Neuropsychobiology, 2004. 50 (3): 252–256.
- Echeverry M.B., Takada S.H., Arruda B.P. Vitamins D and B12, Altered Synaptic Plasticity and Extracellular Matrix. In: B-Complex Vitamins – Sources, Intakes and Novel Applications. Ed. Jean Guy LeBlanc. London: IntechOpen. 2021. 25 p.
- Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front. Cell. Neurosci. 2024. 18: 1360242.
- Erjavec G.N., Sagud M., Perkovic M.N., Strac D.S., Konjevod M., Tudor L. et al. Depression: Biological markers and treatment. Prog. Neuropsychopharmacology Biol. Psychiatry. 2021. 105: 110139.
- Evans-Lacko S., Aguilar-Gaxiola S., Al-Hamzawi A., Alonso J., Benjet C., Bruffaerts R. et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys. Psychol. Med. 2018. 48 (9): 1560–1571.
- Faugere M., Maakaron E., Achour V., Verney P., Andrieu-Haller C., Obadia J. et al. Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders. Nutrients. 2025. 17 (7): 1167.
- Fetahu I.S., Hobaus J., Kallay E. Vitamin D and the epigenome. Front. Physiol. 2014. 5: 164.
- Geer K. Adjustment Disorder: Diagnosis and Treatment in Primary Care. Prim. Care. 2023. 50 (1): 83–88.
- Gersamia A.G., Menshikova A.A., Akzhigitov R.G., Grishkina M.N. Psychometric properties of the Child and Adolescent Trauma Screen (CATS). Russ. J. Psychiatry. 2015. 3: 21–29.
- Gilbody S., Lightfoot T., Sheldon T. Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J. Epidemiol. Community Health. 2007. 61: 631–637.
- Gomez R., Watson S., Brown T., Stavropoulos V. Personality inventory for DSM-5-Brief Form (PID-5-BF): Measurement invariance across men and women. Personality Disorders: Theory, Reasearch, and Treatment. 2023. 14 (3): 334–338.
- Gulyaeva N.V. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. Biochemistry (Mosc). 2023. 88 (5): 565–589.
- Gulyaeva N.V. Augmented Cortisol and Antiglucocorticoid Therapy in Mood Disorders: The Hippocampus as a Potential Drug Target. J. Evol. Biochem. Phys. 2024, 60 (4): 1516–1530. (Гуляева Н.В. Повышенный уровень кортизола и антиглюкокортикоидная терапия при аффективных расстройствах: гиппокамп как потенциальная мишень. Российский физиологический журнал им. И.М. Сеченова. 2024, 110 (7): 1108–1127).
- Hellhammer D.H., Wust S., Kudielka B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009. 34 (2): 163–171.
- Herman J.P., McKlveen J.M. Ghosal S., Kopp B., Wulsin A., Makinson R. et al. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016. 6 (2): 603–621.
- Homberg J.R., Jagiellowicz J. A neural model of vulnerability and resilience to stress-related disorders linked to differential susceptibility. Mol. Psychiatry. 2022. 27: 514–524.
- Hough C.M., Lindqvist D., Epel E.S., St Denis M., Reus V.I., Bersani F.S. et al. Higher serum DHEA concentrations before and after SSRI treatment are associated with remission of major depression. Psychoneuroendocrinology. 2017. 77: 122–130.
- Jäger M. Adjustment disorders – nosological state and treatment options. Psychiatrische Praxis. 2008. 35 (5): 219–225.
- Jiang P., Zhang W.-Y., Li H.-D., Cai H.-L., Liu Y.-P., Chen L.-Y. Stress and vitamin D: Altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology. 2013. 38 (10): 2091–2098.
- Jin R.O., Mason S., Mellon S.H., Epel E.S., Reus V.I., Mahan L. et al. Cortisol/DHEA ratio and hippocampal volume: A pilot study in major depression and healthy controls. Psychoneuroendocrinology. 2016. 72: 139–146.
- Jones P., Lucock M., Scarlett C.J., Veysey M., Beckett E.L. Folate and Inflammation – links between folate and features of inflammatory conditions. Journal of Nutrition & Intermediary Metabolism. 2019. 18: 100104.
- Joseph D.N.; Whirledge S. Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int. J. Mol. Sci. 2017. 18: 2224.
- Kaviani M., Nikooyeh B., Zand H., Yaghmaei P., Neyestani T.R. Effects of vitamin D supplementation on depression and some involved neurotransmitters. Journal of Affective Disorders. 2020. 269: 28–35.
- Keller J., Gomez R., Williams G., Lembke A., Lazzeroni L., Murphy Jr G.M., Schatzberg A.F. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry. 2017. 22 (4): 527–536.
- Kustov G.V., Zinchuk M.S., Pashnin E.V., Voinova N.I., Popova S.B., Gersamia A.G. et al. Study of psychometric characteristics of the Russian version of the PID-5-BF questionnaire. Psychol. J. High Sch. Econ. 2022. 19: 521–542.
- Lardner A.L. Vitamin D and hippocampal development-the story so far. Front. Mol. Neurosci. 2015. 8: 58.
- Leighton S.P., Nerurkar L., Krishnadas R., Johnman C., Graham G.J., Cavanagh J. Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Mol. Psychiatry. 2018. 23: 48–58.
- Liu Q., Nie B., Cui X., Wang W., Duan D. Inflammatory Factors: A Key Contributor to Stress-Induced Major Depressive. Disorder Cells. 2025. 14 (9): 629.
- Malki K., Keers R., Tosto M.G., Lourdusamy A., Carboni L., Domenici E. et al. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Medicine. 2014. 12: 73.
- Martín Giménez V.M., Menéndez S.G., Holick M.F., Manucha W. Vitamin D: A Repurposed Anti-inflammatory Drug at the Cardiovascular Level. CPPS. 2023. 24: 533–535.
- Mathew S.J., Lijffijt M. Neurometabolic Abnormalities in Treatment-Resistant Depression. Am. J. Psychiatry. 2017. 174: 3–5.
- Mikulska J., Juszczyk G., Gawrońska-Grzywacz M., Herbet M. HPA axis in the pathomechanism of depression and schizophrenia: New therapeutic strategies based on its participation. Brain Sciences. 2021. 11 (10): 1298.
- Ohi K., Fujikane D., Kuramitsu A., Takai K., Muto Y., Sugiyama S., Shioiri T. Is adjustment disorder genetically correlated with depression, anxiety, or risk-tolerant personality trait? Journal of Affective Disorders. 2023. 340: 197–203.
- Perrot S., Bouhassira D., Fermanian J. Development and Validation of the Fibromyalgia Rapid Screening Tool (FiRST) Pain. 2010. 150: 250–256.
- Pike J.W., Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017. 46: 815–843.
- Polak M., Houghton L., Reeder A., Harper M., Conner T. Serum 25-Hydroxyvitamin D Concentrations and Depressive Symptoms among Young Adult Men and Women. Nutrients. 2014. 6: 4720–4730.
- Ravi M., Miller A.H., Michopoulos V. The immunology of stress and the impact of inflammation on the brain and behavior. BJPsych. Advances. 2021. 27 (Suppl 3): 158–165.
- Rebecca E.S. Anglin Z.S., Stephen D.W., Sarah D.M. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. The British Journal of Psychiatry. 2013. 202: 100–107.
- Reiche E.M, Nunes S.O, Morimoto H.K. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004. 5 (10): 617–625.
- Remes O., Mendes J.F., Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci. 2021. 11 (12): 1633.
- Restituto P., Galofré J.C., Gil M.J., Mugueta C., Santos S., Monreal J.I., Varo N. Advantage of salivary cortisol measurements in the diagnosis of glucocorticoid related disorders. Clinical Biochemistry. 2008. 41 (9): 688–692.
- Russell S.T., Pollitt A.M., Li G., Grossman A.H. Chosen Name Use Is Linked to Reduced Depressive Symptoms, Suicidal Ideation, and Suicidal Behavior Among Transgender Youth. J. Adolesc. Health. 2018. 63 (4): 503–505.
- Sailike B., Onzhanova Z., Akbay B., Tokay T., Molnár F. Vitamin D in Central Nervous System: Implications for Neurological Disorders. Int. J. Mol. Sci. 2024. 25: 7809.
- Sanders B., Becker-Lausen E. The measurement of psychological maltreatment: Early data on the Child Abuse and Trauma Scale. Child. Abus. Negl. 1995. 19: 315–323.
- Slavich G.M., Irwin M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014. 140: 774–815.
- Souza-Teodoro L.H., Andrade L.H.S.G., de Carvalho L.A. Could dehydroepiandrosterone (DHEA) be a novel target for depression? Journal of Affective Disorders Reports. 2022. 8 (2): 100340.
- Souza-Teodoro L.H., de Oliveira C., Walters K., Carvalho L.A. Higher serum dehydroepiandrosterone sulfate protects against the onset of depression in the elderly: Findings from the English Longitudinal Study of Aging (ELSA). Psychoneuroendocrinology. 2016. 64: 40–46.
- Spielberger C.D., Gorsuch R.L., Lushene R., Vagg P.R., Jacobs G.A. Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. 1983.
- Tafet G.E., Nemeroff C.B. The Links Between Stress and Depression: Psychoneuroendocrinological, Genetic, and Environmental Interactions. The Journal of Neuropsychiatry and Clinical Neurosciences. 2016. 28 (2): 77–88.
- Tammayan M., Jantaratnotai N., Pachimsawat P. Differential responses of salivary cortisol, amylase, and chromogranin A to academic stress. PLoS One. 2021. 16 (8): e0256172.
- Tannous J., Godlewska B.R., Tirumalaraju V., Soares J.C., Cowen P.J., Selvaraj S. Stress, inflammation and hippocampal subfields in depression: A 7 Tesla MRI Study. Transl. Psychiatry. 2020. 10: 78.
- Troubat R., Barone P., Leman S., Desmidt T., Cressant A., Atanasova B. et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021. 53 (1): 151–171.
- Umamaheswaran S., Dasari S.K., Yang P., Lutgendorf S.K., Sood A.K. Stress, inflammation, and eicosanoids: An emerging perspective. Cancer Metastasis Rev. 2018. 37: 203–211.
- Vining R.F., McGinley R.A., Maksvytis J.J., Ho K.Y. Salivary cortisol: a better measure of adrenal cortical function than serum cortisol Ann Clin Biochem. 1983. 20 (Pt 6): 329–335.
- Zhou Y., Cong Y., Liu H. Folic Acid Ameliorates Depression-like Behaviour in a Rat Model of Chronic Unpredictable Mild Stress. BMC Neurosci. 2020. 21 (1): 1.
- Zhu H., Wang X., Shi H., Su S., Harshfield G.A., Gutin B. et al. A Genome-Wide Methylation Study of Severe Vitamin D Deficiency in African American Adolescents. J. Pediatr. 2013. 162: 1004–1009.e1.
补充文件


