ON OPTIMIZING MINISCOPE DATA ANALYSIS WITH SIMULATED DATA: A STUDY OF PARAMETER OPTIMIZATION IN THE MINIAN ANALYSIS PIPELINE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In vivo calcium imaging is widely used technique in neuroscience to evaluate the activity of neuronal networks. The miniscope, a single-photon miniature fluorescent microscope, has made it possible to conduct in vivo calcium imaging in freely moving animals. Various algorithms and software packages have been developed for the analysis of miniscope data. This study investigates the relationship between the sensitivity of neuron detection and the processing parameters utilized in the Minian analysis pipeline at different noise levels. To achieve this objective, we generated simulated data possessing certain attributes of an experimentally derived dataset. Simulated data was generated with various noise levels and processed through to the Minian analysis pipeline. Based on our findings, we provide recommendations for optimal values of Minian pipeline parameters depending on different noise levels. The results obtained in this study may serve as a preliminary guide for selecting appropriate parameter values during the processing of experimental data using the Minian analysis pipeline. The findings of this study are expected to be relevant to neuroscientists involved in the acquisition and processing of miniscope data.

作者简介

A. Erofeev

Laboratory of molecular neurodegeneration, Peter the Great St. Petersburg polytechnic university

编辑信件的主要联系方式.
Email: alexander.erofeew@gmail.com
Russia, St. Petersburg

M. Petrushan

Laboratory of Synaptic Biology, Southern Federal University

Email: ilya.bezprozvanny@utsouthwestern.edu
Russia, Rostov-On-Don

L. Lysenko

Laboratory of Synaptic Biology, Southern Federal University

Email: ilya.bezprozvanny@utsouthwestern.edu
Russia, Rostov-On-Don

E. Vinokurov

Laboratory of molecular neurodegeneration, Peter the Great St. Petersburg polytechnic university

Email: ilya.bezprozvanny@utsouthwestern.edu
Russia, St. Petersburg

O. Vlasova

Laboratory of molecular neurodegeneration, Peter the Great St. Petersburg polytechnic university

Email: ilya.bezprozvanny@utsouthwestern.edu
Russia, St. Petersburg

I. Bezprozvanny

Laboratory of molecular neurodegeneration, Peter the Great St. Petersburg polytechnic university; Laboratory of Synaptic Biology, Southern Federal University; Department of Physiology, University of Texas Southwestern Medical Center at Dallas

编辑信件的主要联系方式.
Email: ilya.bezprozvanny@utsouthwestern.edu
Russia, St. Petersburg; Russia, Rostov-On-Don; United States of America, TX, Dallas

参考

  1. Aharoni D., Khakh B.S., Silva A.J., Golshani P. All the light that we can see: a new era in miniaturized microscopy. Nature Methods. 2019. 16 (1): 11–13.
  2. Bao Y., Soltanian-Zadeh S., Farsiu S., Gong Y. Segmentation of neurons from fluorescence calcium recordings beyond real time. Nature Machine Intelligence. 2021. 3 (7): 590–600.
  3. Barbera G., Jun R., Zhang Y., Liang B., Li Y., Lin D.-T. A miniature fluorescence microscope for multi-plane imaging. Scientific Reports. 2022. 12 (1): 16686.
  4. Cantu D.A., Wang B., Gongwer M.W., He C.X., Goel A., Suresh A., Kourdougli N., Arroyo E.D., Zeiger W., Portera-Cailliau C. EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data. Frontiers in Neural Circuits. 2020. 14.
  5. de Kraker L., Seignette K., Thamizharasu P., van den Boom B.J.G., Ferreira Pica I., Willuhn I., Levelt C.N., Togt C.V.D. SpecSeg is a versatile toolbox that segments neurons and neurites in chronic calcium imaging datasets based on low-frequency cross-spectral power. Cell Reports Methods. 2022. 2 (10): 100299.
  6. Denk W., Strickler J.H., Webb W.W. Two-Photon Laser Scanning Fluorescence Microscopy. Science. 1990. 248 (4951): 73–76.
  7. Dong Z., Mau W., Feng Y., Pennington Z.T., Chen L., Zaki Y., Rajan K., Shuman T., Aharoni D., Cai D.J. Minian, an open-source miniscope analysis pipeline. eLife. 2022. 11: e70661.
  8. Engelbrecht C.J., Johnston R.S., Seibel E.J., Helmchen F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Optics Express. 2008. 16 (8): 5556–5564.
  9. Erofeev A.I., Barinov D.S., Gerasimov E.I., Pchitskaya E.I., Bolsunovskaja M.V., Vlasova O.L., Bezprozvanny I.B. NeuroInfoViewer: A Software Package for Analysis of Miniscope Data. Neuroscience and Behavioral Physiology. 2021. 51 (8): 1199–1205.
  10. Escobet-Montalban A., Gasparoli F.M., Nylk J., Liu P., Yang Z., Dholakia K. Three-photon light-sheet fluorescence microscopy. Opt Lett. 2018. 43 (21): 5484–5487.
  11. Friedrich J., Giovannucci A., Pnevmatikakis E.A. Online analysis of microendoscopic 1-photon calcium imaging data streams. PLoS Comput Biol. 2021. 17 (1): e1008565.
  12. Ghosh K.K., Burns L.D., Cocker E.D., Nimmerjahn A., Ziv Y., Gamal A.E., Schnitzer M.J. Miniaturized integration of a fluorescence microscope. Nature Methods. 2011. 8 (10): 871–878.
  13. Giovannucci A., Friedrich J., Gunn P., Kalfon J., Brown B.L., Koay S.A., Taxidis J., Najafi F., Gauthier J.L., Zhou P., Khakh B.S., Tank D.W., Chklovskii D.B., Pnevmatikakis E.A. CaImAn an open source tool for scalable calcium imaging data analysis. eLife. 2019. 8: e38173.
  14. Grienberger C., Konnerth A. Imaging calcium in neurons. Neuron. 2012. 73 (5): 862–885.
  15. Iwasaki S., Ikegaya Y. In vivo one-photon confocal calcium imaging of neuronal activity from the mouse neocortex. J. Integr. Neurosci. 2018. 17 (3–4): 671–678.
  16. Li M., Liu C., Cui X., Jung H., You H., Feng L., Zhang S. An Open-Source Real-Time Motion Correction Plug-In for Single-Photon Calcium Imaging of Head-Mounted Microscopy. Frontiers in Neural Circuits. 2022. 16.
  17. Liberti W.A., Perkins L.N., Leman D.P., Gardner T.J. An open source, wireless capable miniature microscope system. J. Neural Engineering. 2017. 14 (4): 045001.
  18. Lu J., Li C., Singh-Alvarado J., Zhou Z.C., Frohlich F., Mooney R., Wang F. MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. Cell Rep. 2018a. 23 (12): 3673–3684.
  19. Lu J., Li C., Singh-Alvarado J., Zhou Z.C., Fröhlich F., Mooney R., Wang F. MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. Cell Reports. 2018b. 23 (12): 3673–3684.
  20. Mukamel E.A., Nimmerjahn A., Schnitzer M.J. Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data. Neuron. 2009. 63 (6): 747–760.
  21. Pachitariu M., Stringer C., Dipoppa M., Schröder S., Rossi L.F., Dalgleish H., Carandini M., Harris K.D. Suite2p: beyond 10 000 neurons with standard two-photon microscopy. bioRxiv. 2017. 061507.
  22. Pnevmatikakis E.A., Giovannucci A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neuroscience Methods. 2017. 291: 83–94.
  23. Pnevmatikakis Eftychios A., Soudry D., Gao Y., Machado T.A., Merel J., Pfau D. et al. Simultaneous Denoising, Deconvolution, Demixing of Calcium Imaging Data. Neuron. 2016. 89 (2): 285–299.
  24. Pochechuev M.S., Fedotov I.V., Ivashkina O.I., Roshchina M.A., Meshchankin D.V., Sidorov-Biryukov D.A., Fedotov A.B., Anokhin K.V., Zheltikov A.M. Reconnectable fiberscopes for chronic in vivo deep-brain imaging. J. Biophotonics. 2018. 11 (4): e201700106.
  25. Radstake F.D.W., Raaijmakers E.A.L., Luttge R., Zinger S., Frimat J.P. CALIMA: The semi-automated open-source calcium imaging analyzer. Computer Methods and Programs in Biomedicine. 2019. 179: 104991.
  26. Resendez S.L., Stuber G.D. In vivo Calcium Imaging to Illuminate Neurocircuit Activity Dynamics Underlying Naturalistic Behavior. Neuropsychopharmacology. 2015. 40 (1): 238–239.
  27. Robbins M., Christensen C., Kaminski C., Zlatic M. Calcium imaging analysis ? how far have we come? [version 2; peer review: 3 approved]. F1000Research. 2021. 10 (258).
  28. Russell J.T. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology. British J. Pharmacology. 2011. 163 (8): 1605–1625.
  29. Sità L., Brondi M., Lagomarsino de Leon Roig P., Curreli S., Panniello M., Vecchia D., Fellin T. A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging. Nature Communications. 2022. 13 (1): 1529.
  30. ter Veer M.J.T., Pfeiffer T., Nägerl U.V. Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo. Super-Resolution Microscopy: Methods and Protocols. 2017. 45–64.
  31. Vogt N. Two-photon imaging in freely behaving mice. Nature Methods. 2022. 19 (5): 518–518.
  32. Wu X., Yang X., Song L., Wang Y., Li Y., Liu Y., Yang X., Wang Y., Pei W., Li W. A Modified Miniscope System for Simultaneous Electrophysiology and Calcium Imaging in vivo. Frontiers in Integrative Neuroscience. 2021. 15.
  33. Zátonyi A., Madarász M., Szabó Á., Lőrincz T., Hodován R., Rózsa B., Fekete Z. Transparent, low-autofluorescence microECoG device for simultaneous Ca2+ imaging and cortical electrophysiology in vivo. J. Neural Engineering. 2020. 17 (1): 016062.
  34. Zhou P., Resendez S.L., Rodriguez-Romaguera J., Jimenez J.C., Neufeld S.Q., Giovannucci A., Friedrich J., Pnevmatikakis E.A., Stuber G.D., Hen R., Kheirbek M.A., Sabatini B.L., Kass R.E., Paninski L. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife. 2018. 7: e28728.
  35. Zong W., Obenhaus H.A., Skytøen E.R., Eneqvist H., de Jong N.L., Vale R., Jorge M.R., Moser M.-B., Moser E.I. Large-scale two-photon calcium imaging in freely moving mice. Cell. 2022. 185 (7): 1240–1256.e1230.
  36. Zong W., Wu R., Chen S., Wu J., Wang H., Zhao Z. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nature Methods. 2021. 18 (1): 46–49.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (679KB)
3.

下载 (414KB)
4.

下载 (101KB)
5.

下载 (90KB)
6.

下载 (45KB)
7.

下载 (84KB)

版权所有 © А.И. Ерофеев, М.В. Петрушан, Л.В. Лысенко, Е.К. Винокуров, О.Л. Власова, И.Б. Безпрозванный, 2023

##common.cookie##