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In the present paper, we propose a numerical method for modeling the downstream

propagation of optimal disturbances in compressible boundary layers over three-dimensional

aerodynamic con�gurations. At each integration step, the method projects the numerical

solution of governing equations onto an invariant subspace of physically relevant eigenmodes;

and the numerical integration is performed along the lines of disturbance propagation.

The propagation of optimal disturbances is studied in a wide range of parameters for

two con�gurations: a boundary layer over a swept wing of �nite span, and a boundary

layer over a prolate spheroid. It is found that the dependence of the disturbance energy

ampli�cation on the spanwise wavenumber has two local maxima. It is discussed how

to combine the developed method with the modern approaches, which are designed to

predict the onset of laminar�turbulent transition using the eN -method.
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1. Introduction

One of the possible scenarios of the laminar�turbulent transition is the so-called bypass

scenario, which is accompanied by the development of quasi-stationary disturbances dominated

by the streamwise velocity component. Such disturbances are called streaks or streaky

structures. Usually, the bypass scenario takes place at a high degree of the freestream

turbulence.

The streaks develop from streamwise vortices due to the lift-up e�ect [1]�[3]. The lift-up

e�ect is one of the main physical mechanisms responsible for a disturbance energy growth

at �nite time (or space) intervals [4]. Mathematically, this phenomenon is caused by the
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non-orthogonality of eigenmodes of the linearized system governing the small-amplitude

disturbance propagation [5]. For some speci�c disturbances, the transient energy growth

might be of signi�cant magnitude. The disturbance achieving maximum energy ampli�cation

at �nite time intervals is called an optimal disturbance [6]�[9]. In particular, the optimal

disturbances allow estimating various disturbance characteristics within the bypass scenario

[10].

Spatial, both stationary and traveling, optimal disturbances of incompressible laminar

boundary layers were �rst computed for the Blasius boundary layer [10, 11]. In these

studies, it is taken into account that the main �ow is non-parallel, i.e. the boundary

layer thickness increases downstream. The spatial optimal disturbances are found for the

Poiseuille �ow in a circular pipe [12] and a plane channel [13], and for the boundary

layer over a weakly concave surface [14]. In addition, optimal disturbances are studied for

viscous incompressible jets [15, 16]. For compressible boundary layers, the spatial optimal

disturbances were �rst computed in the work [17], with the local-parallel approximation

being applied. For all these main �ows with the disturbance parameters ensuring that

any individual eigenmode decays downstream, it is shown that the maximum energy

ampli�cation is achieved by stationary vortices either periodic in spanwise direction or

periodic in azimuthal direction (for the circular-pipe �ow). The downstream propagation

of optimal disturbances is studied both for the incompressible Falkner�Skan�Cooke boundary

layer [18] and the compressible boundary layer with local self-similarity [19]. In these

studies, non-parallel boundary layers are considered as well, and a variant of PSE method

is used for describing the downstream propagation of disturbances. At parameter values

ensuring the main boundary-layer linear instability, it is shown that the energy growth

of optimal disturbances might exceed the growth predicted for modal instabilities by

several orders of magnitude. In addition, the maximum energy ampli�cation is achieved

by traveling disturbances.

In the most studies mentioned above, the downstream propagation of small-amplitude

disturbances is governed by equations, where the streamwise viscous dissipation terms as

well as the streamwise pressure gradient are regarded as negligible. The equations thus

obtained are parabolic, and the streamwise initial-value problem is well-posed for them.

There is another approach, which does not require neglecting these terms in original

equations. Namely, for modeling the downstream propagation of disturbances, one can

project the numerical solution onto a subspace of physically relevant eigenmodes. This idea

[17] is developed [20, 21, 22] by the authors, who use the abbreviation OWNS (One-Way
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spatial integration of the Navier�Stokes equations) for this class of numerical methods.

In the present paper, we use an original implementation of this approach, where the

spectral projector [23] is computed at each integration step to exclude the contribution of

non-physical modes. The non-physical modes are de�ned as those propagating upstream

and growing downstream at large rates [24]. This method was tested for the downstream

propagation of both Tollmien�Schlichting waves and Goertler vortices in the non-parallel

boundary layer over a slightly concave plate [25, 24].

In all the above-mentioned studies, the non-modal stability analysis is performed for

canonical main �ows, which depend either on one or two spatial coordinates. The present

paper aims at the development of an approach for the non-modal stability analysis of

compressible boundary layers over three-dimensional aerodynamic con�gurations. This

approach can be served as a basis for predicting the onset of the bypass laminar�turbulent

transition in engineering applications. In addition, the paper discusses how to integrate

this approach into a modern technology of the transition prediction by the eN -method with

the example of such a technology proposed in the work [26]. By the developed approach,

we compute the spatial optimal disturbances for two three-dimensional aerodynamic

con�gurations: a boundary layer over a swept wing of �nite span, and a boundary layer

over a prolate spheroid. Such a computation is done for the �rst time.

Over the last ten years, the authors of the present paper have been developing LOTRAN

[26, 27], a software package designed for computing the position of the laminar�turbulent

transition for three-dimensional aerodynamic boundary layers over �ow-exposed bodies of

small curvature. LOTRAN is widely used both for fundamental scienti�c research and for

engineering purposes [28, 29, 30, 31, 26]. The coupling structure of LOTRAN is presented

in Fig. 1.

LOTRAN is designed to work together with any CFD-code that computes a laminar�

turbulent �ow over a given �ow-exposed body, using some turbulence model (e.g., k-ω

SST [32]) and a given intermittency distribution. To compute the transition position,

an iterative process starts. At each iteration, the laminar�turbulent �ow is computed by

CFD-code, with zero intermittency being set for the assumed laminar domain (and slightly

downstream) and unit intermittency being set elsewhere. The obtained laminar�turbulent

�ow data, such as velocity components, pressure, temperature, and intermittency, are

taken as an input for the Main Flow module; this module interpolates the data from the

CFD-code grid to a tetrahedral grid. Next, the Boundary Layer module constructs 2D-

slices along disturbance propagation lines in the domain of interest on the body surface.
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The procedure for constructing the slices is described in detail in the work [26]. Then,

this module introduces curvilinear orthogonal coordinates along the slices, constructing a

computational grid within these coordinates and interpolating the �ow data to that grid

from the previous tetrahedral grid. Then, for each slice, the Stability Analysis module

computes the neutral stability curves as well as the growth rates of the most unstable local

modes being harmonic in time and spanwise coordinate. The downstream propagation

of small-amplitude disturbances is governed by the viscous compressible heat-and-mass-

transfer equations linearized with respect to the main �ow [27]. These equations are brie�y

described in Section 2 of the present paper. Then, along each slice, the Transition Analysis

module �nds the transition onset by the eN -method and evaluates the transition length.

These results are given to the CFD-code to set a new intermittency distribution, and

hence compute a new laminar�turbulent �ow. Such an iterative process stops when the

transition position converges with an acceptable accuracy.

Section 3 describes a numerical method for computing the spatial optimal disturbances

of three-dimensional boundary layers. A new module, Non-Modal Analysis, implements

this method within LOTRAN. The optimal disturbances are computed along the same

slices as for the modal analysis. To this end, we numerically solve streamwise initial-value

problems for the same small-amplitude disturbance propagation equations as within the

modal analysis, while the original method [25, 24] is used for the numerical integration.

As a result of the numerical integration with di�erent initial values, we �nd the matrix

of fundamental solutions. This matrix allows computing the spatial optimal disturbances,

using the discrete analogue of the total energy density functional [17, 33].

Each slice consists of a few surface normals with the main �ow data. These normals

are called main normals. The distance between the adjacent main normals approximately

equals the streamwise size of grid cells, which are used for the main-�ow computation.

However, such a distance is usually not small enough to be chosen as the streamwise

integration step for modeling the downstream propagation of disturbances. Therefore, we

introduce additional uniform grids between the main normals assuming that the main �ow

does not change between the adjacent main normals. The matrix of fundamental solutions

between any two main normals is obtained by the multiplication of those between the

adjacent main normals. This allows us to naturally parallelize the algorithm as well as

to reduce the computational cost of parametric computations. Speci�cally, if all matrices

of fundamental solutions between the adjacent main normals are found, then the optimal

disturbances might be found e�ciently for given pair of generation and observation points.
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Section 4 shows the results of numerical experiments with the proposed numerical

method and the two above-mentioned con�gurations. In the range of spanwise wavenumbers

favorable for the development of cross�ow vortices, it is shown that the energy ampli�cation

has an additional local maximum with the spanwise wavenumber being small. This phenomenon

was previously observed in the laboratory experiments [34] for a swept wing, but was not

con�rmed numerically. For a prolate spheroid, this e�ect has not previously been found

either experimentally or numerically. Section 5 summarizes the results of the present

paper.

Throughout the present paper, ∥.∥2 denotes the 2-norm for vectors and matrices, I

denotes the identity matrix whose order is clear from the context, and ′∗′ denotes the

symbol of conjugate transposition.

2. Governing equations

In the Cartesian coordinates (x1, x2, x3), let us consider the non-dimensional governing

equations of viscous compressible media, which represent the conservation law of momentum,

energy and mass, and the ideal gas law. Written with the tensor summation convention,

these equations are as follows

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − 1

γM2

∂p

∂xi

+
1

Re

∂σij

∂xj

,

ρ

(
∂T

∂t
+ uj

∂T

∂xj

)
= −(γ − 1)ρT

∂uj

∂xj

+
γ

PrRe

∂

∂xj

(
κ
∂T

∂xj

)
+ γ(γ − 1)

M2

Re
Π,

∂ρ

∂t
+

∂(ρuj)

∂xj

= 0,

p = ρT,

(2.1)

where

σij = 2µeij + λekkδij, eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, Π = σijeij.

Here uj are the velocity components, ρ is the density, p is the static pressure, T is the

temperature, µ and λ are the �rst and second viscosity coe�cients, κ is the thermal

conductivity, and γ is the adiabatic index. The Prandtl number, Mach number and

Reynolds number are de�ned as

Pr =
cpµref

κref

, M =
Uref√
γRTref

, Re =
UrefLrefρref

µref

, (2.2)

where the speci�c gas constant is denoted by R, and the speci�c heat at constant pressure

by cp. Here the subscript ref refers to dimensional scales, with Lref and Uref denoting
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referential length and velocity scales. We assume that both the dynamic viscosity µ = µ(T )

and the heat conductivity κ = κ(T ) in (2.1) depend only on temperature, with these

dependencies being given explicitly [35, 27]. For the second viscosity coe�cient, the Stokes

hypothesis λ = −2µ/3 is assumed.

Suppose the system (2.1) has a stationary solution with the velocity components ūi,

temperature T̄ , density ρ̄, pressure p̄, and the coe�cients µ̄ = µ(T̄ ), λ̄ = λ(T̄ ) and κ̄ =

κ(T̄ ). In the sequel, such a stationary solution is called the main �ow. The propagation of

small-amplitude disturbances against the main �ow is governed by the following linearized

equations [27]

ρ̄

(
∂u′

i

∂t
+ ūj

∂u′
i

∂xj

+ u′
j

∂ūi

∂xj

)
+ ρ′ūj

∂ūi

∂xj

= − 1

γM2

∂p′

∂xi

+
1

Re

∂σ′
ij

∂xj

,

ρ̄

(
∂T ′

∂t
+ ūj

∂T ′

∂xj

+ u′
j

∂T̄

∂xj

)
+ ρ′ūj

∂T̄

∂xj

=

− (γ − 1)

(
ρ̄

(
T̄
∂u′

j

∂xj

+ T ′∂ūj

∂xj

)
+ ρ′T̄

∂ūj

∂xj

)
+

γ

PrRe

∂

∂xj

(
κ̄
∂T ′

∂xj

+ κ̄TT
′ ∂T̄

∂xj

)
+ γ(γ − 1)

M2

Re
Π′,

∂ρ′

∂t
+

∂ρ̄u′
j

∂xj

+
∂ρ′ūj

∂xj

= 0,

p′ = ρ̄T ′ + ρ′T̄ ,

(2.3)

where

σ′
ij = 2µ̄e′ij + 2µ̄TT

′ēij +
(
λ̄e′kk + λ̄TT

′ēkk
)
δij,

e′ij =
1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
,

Π′ = σ̄ije
′
ij + 2µ̄e′ij ēij + 2µ̄TT

′ēij ēij +
(
λ̄e′kkēij + λ̄TT

′ēkkēij
)
δij.

Here the disturbance velocities are denoted by u′
i, the disturbance temperature by T ′, the

disturbance density by ρ′, the disturbance pressure by p′, and f̄T = df/dT (T̄ ).

Within LOTRAN, the modal stability analysis is performed for laminar boundary

layers over surfaces of small curvature. The disturbance propagation is studied along

the boundary-layer slices (see Introduction), where the following curvilinear orthogonal

coordinates are used: y is the distance to the surface along the normal, x is the arc length

from the beginning of the slice to the base of this normal along the slice, and z is the

spanwise coordinate. The main �ow is assumed to be computed by a CFD-code. As for the

referential dimensional scales in (2.2), we use those of the freestream. The dimensionless

numbers (2.2) thus de�ned are denoted by Pr∞, M∞ and Re∞.
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We assume that the main �ow does not depend on z along the slice, and hence only

disturbances of the form

Real{ϕei(βz−ωt)}, (2.4)

are considered, where ω is the angular frequency, β is the spanwise wavenumber, and t is

the time. Here ϕ is the complex-valued vector of disturbance amplitudes that consists of

the streamwise, normal and spanwise velocities, the pressure, and the temperature; and

these amplitudes depend only on x and y. We also assume that the surface curvature

is small, and the normal velocity of the main �ow is negligible. In addition, we apply

the local-parallel approximation, i.e. the main-�ow components depend on x, but their

derivatives on x are regarded as negligible.

Based on (2.3) but under the above-mentioned assumptions, one can derive [27] the

equations governing the propagation of disturbance amplitudes of the form (2.4). In the

present paper, we use these equations, with the disturbance amplitudes satisfying zero

boundary conditions at y = 0 and y = ∞.

Optimal disturbances are computed along the boundary-layer slices, assuming that

the disturbances are of the form (2.4). The downstream propagation of the optimal

disturbances is governed by the same equations [27] as for the modal stability analysis.

3. Non-modal analysis

The governing equations, which are discussed in Section 2, are approximated in the

normal direction y by a collocation method. Then, the disturbance amplitudes become

vector functions depending only on x; and we keep the same notation for the disturbance

amplitudes both before and after the spatial approximation. After the approximation, the

disturbance amplitudes satisfy the system of ordinary di�erential equations [27]

A
d2ϕ

dx2
+ B

dϕ

dx
+ (iωC−D)ϕ = 0. (3.5)

Here A, B, C and D are square x-dependent matrices of order 5ny, where ny is the number

of the interior grid nodes in the normal direction. It is worth noting that A is a diagonal

matrix whose last ny diagonal entries are zero, and C is a nearly-diagonal matrix. Let

us introduce four additional variables that represent the derivatives with respect to x

of the disturbance velocity components and temperature. Then, equation (3.5) might be

rewritten as the system of �rst-order ordinary di�erential equations

M(x)
dq

dx
= q, (3.6)
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where M(x) is an x-dependent matrix of order 9ny, and q = q(x) is a 9ny-component

vector function.

Optimal disturbances largely depend on a functional, which is used for the optimization

[36]. In the studies [33, 17, 19] of optimal disturbances of compressible boundary layers,

the functional

E =

+∞∫
0

ρ̄
(
|u|2 + |v|2 + |w|2

)
+

T̄

γM2
∞ρ̄

|ρ|2 + ρ̄

γ(γ − 1)M2
∞T̄

|T |2 dy (3.7)

of total disturbance energy density is used, where u is the streamwise velocity amplitude,

v is the normal velocity amplitude, w is the spanwise velocity amplitude, ρ is the density

amplitude, and T is the temperature amplitude. Note that both the main-�ow density ρ̄

and the main-�ow temperature T̄ depend both on y and x, in general. Within LOTRAN,

the disturbance pressure p appears in the governing equations instead of the disturbance

density ρ. Using the relation

p = ρ̄T + T̄ ρ (3.8)

that comes from the ideal gas law, the discrete analogue of (3.7) might be rewritten as

q∗Eq, where E = E(x) is an x-dependent Hermitian matrix of rank 5ny.

3.1. Downstream integration

Each slice consists of a few main normals with the main �ow data. We introduce

additional uniform grids between the main normals with the same number of interior grid

nodes nx; and it is assumed that the main �ow does not change between the adjacent

main normals. The streamwise coordinates of the main normal bases are denoted by

x1 < x2 < . . . , the subgrid step by hj = (xj+1 − xj)/(nx + 1), and the subgrid nodes by

xj,k = xj + (k − 1)hj.

Consider the streamwise initial-value problem for the system (3.6) with the initial node

xj, the �nal node xj+1, and the initial condition q(xj) = qj. At xj, we compute the system

matrixMj = M(xj) and use it at each integration step. The initial-value problem allows for

non-physical solutions growing downstream at large rates and propagating upstream [17].

To exclude such solutions, we use standard numerical schemes combined with the spectral

projection such as that for viscous incompressible �ows [25, 24]. We project the numerical

solution onto an invariant subspace of Mj corresponding to the physically relevant subset

Λj of its spectrum.
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The subset Λj consists of all eigenvalues λ satisfying the inequality Real 1/λ ≤ 0.8 |β|,
where β is the spanwise wavenumber [26]. This estimation is based on considering the

asymptotic behavior of the branches of continuous spectrum of the problem [17]. It can

be shown analytically that for the part of continuous spectrum in the right half-plane

(corresponding to the upstream traveling disturbances) Imag(1/λ) ⩾ |β|. The coe�cient

0.8 is introduced just to be on the safe side to guarantee that no upstream traveling mode

is present in Λj. Note that in the cases under consideration linear instability occurs only

at quite large values of |β|. Meanwhile, as our tests showed, the leading discrete mode

always has Real 1/λ ≤ 0.8 |β|. Outside of the linear instability region the inequality can

be changed to Real 1/λ ≤ 0. Numerical experiments show that the physically relevant

eigenvalues thus de�ned are well separated from the non-physical ones [24].

The spectral projectors at each j are computed using the Schur decomposition [37]

of Mj. The spectral projector thus computed appears as Pj = XjYj [23], where Xj is a

rectangular matrix whose columns form the orthonormal basis in the invariant subspace of

Mj corresponding to the subset Λj, and Yj is a rectangular matrix ensuring the following

identities

XjYjMj = XjSjYj = MjXjYj, YjXj = I

being valid, where Sj = X∗
jMjXj is the restriction of Mj to the invariant subspace.

At the �rst integration step we use the implicit Euler method modi�ed as follows

q̃j,1 = Yjqj, Sj
q̃j,2 − q̃j,1

hj

= q̃j,2,

where qj is the solution at the j-th main normal. At other integration steps, we use the

BDF-2 scheme modi�ed as follows

Sj
3q̃j,k − 4q̃j,k−1 + q̃j,k−2

2hj

= q̃j,k.

After the last step done, we put qj+1 = Pj+1Xjq̃j,nx+2.

To compute the matrix of fundamental solutions Φj between normals j and j +

1, we take the columns of the identity matrix as the initial condition q̃j,1. Then, the

columns of Φj are the vectors q̃j,nx+2, with the matrix Φj satisfying the equality qj+1 =

Pj+1XjΦjYjqj for any initial condition qj. Thus, one can represent the numerical solution

of the streamwise initial-value problem between the jg-th and jo-th main normals as

qjo = PjoXjo−1Φjo−1Yjo−1 . . .XjgΦjgYjgqjg = XjoFjg ,joYjgqjg ,

where

Fjg ,jo = YjoXjo−1Φjo−1 . . .Yjg+1XjgΦjg .
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3.2. Computation of optimal disturbances

We say that the optimal disturbance is a disturbance being generated at x = xjg and

achieving the maximum energy ampli�cation at x = xjo . In the sequel, xjg is called the

generation point, and xjo is called the observation point. In addition, we suppose that the

optimal disturbance belongs to an invariant subspace of physically relevant eigenmodes of

a given dimension m. This invariant subspace is constructed in two steps. First, we select

the subset Λjg of the spectrum of Mjg , as described above. Next, among the eigenvalues

of Λjg , we select m ones having the largest values of Real 1/λ and use the obtained set

instead of Λjg , keeping the same notation. Since the rank of the matrix E(x) is equal

to 5ny, then m should not exceed 5ny. For numerical experiments, we choose m = 2ny,

since for a �xed number of grid nodes ny, the maximum disturbance energy ampli�cation

converges with further increase in m.

The optimal disturbance is computed by solving the problem that consist in maximizing

the energy ampli�cation of disturbances from the subspace associated with Λjg :

max
qjg=Pjgqjg ̸=0

q∗
joEjoqjo

q∗
jg
Ejgqjg

, (3.9)

where Ej = E(xj).

By Lj denote the lower triangular matrix that forms the factorization Ej = L∗
jLj. Let

LjXj = QjRj be the QR-decomposition [37] with the unitary rectangular matrix Qj and

the upper triangular matrix Rj. Let q̃j = Yjqj and µj = Rjq̃j. Then

q∗
joEjoqjo

q∗
jg
Ejgqjg

=
∥Ljoqjo∥22
∥Ljgqjg∥22

=
∥LjoXjoq̃jo∥22
∥LjgXjg q̃jg∥22

=
∥RjoFjg ,joR

−1
jg
µjg∥22

∥µjg∥22
.

Therefore, the solution of the problem (3.9) is reduced to computing the largest

singular value of the matrix RjoFjg ,joR
−1
jg

and the corresponding normalized right singular

vector µopt
jg
. The optimal disturbance in physical variables is then computed by the

formula qopt
jg

= XjgR
−1
jg
µopt

jg
, and its downstream propagation is governed by the formula

qopt
j = XjFjg ,jYjgq

opt
jg

for j ⩾ jg. At the same time, the value

Ej(xjg , xjo) = (qopt
j )∗Ejq

opt
j = ∥µopt

j ∥22

is the total energy density of the optimal disturbance at a point x = xj. For the point

xjo , the maximum N -factor among disturbances generated at xjg is thus equal to

Nmax(xjg , xjo) =
1

2
ln Ej(xjg , xjo).
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4. Results

This section discusses results of the computation of optimal disturbances for two 

con�gurations illustrated in Fig. 1 in the global Cartesian coordinates (X, Y, Z):
A) the windward surface of swept wing at an angle of attack of −5◦. The wing has the

modi�ed NACA 67 1-215 laminarized airfoil with a chord length (normal to the leading

edge) of 0.7 m, and 45◦ sweep angle. The freestream parameters are as follows: the velocity

U∞ = 27 m/s, the density ρ∞ = 1.18 kg/m3, and the kinematic viscosity ν∞ = 1.57×10−5

m2/s. Such parameter values correspond to the Reynolds number Re∞ = 1.72× 106 and

the Mach number M∞ = 0.08. This con�guration corresponds to experiments [38, 39]

on the laminar�turbulent transition in boundary layers over the swept wing SW-45 at

various angles of attack. Data on the considered laminar boundary layer are computed

[26, 40, 41] by ANSYS Fluent in a digital analogue of the test section of the T-324 wind

tunnel of ITAM SB RAS.

B) prolate spheroid at an angle of attack of +10◦. The spheroid has a length of 2.4

m, and an aspect ratio of 6 : 1 : 1. The freestream parameters are as follows: the velocity

U∞ = 45 m/s, the density ρ∞ = 1.23 kg/m3, and the kinematic viscosity ν∞ = 1.50×10−5

m2/s. Such parameter values correspond to the Reynolds number Re∞ = 7.20× 106 and

the Mach number M∞ = 0.13. This con�guration corresponds to experiments [42, 43] on

the laminar�turbulent transition in boundary layers over bodies of revolution. Data on

the considered laminar boundary layer are computed [26] using ANSYS Fluent.

The boundary layer stability is analyzed along the slices shown in Fig. 2. Pro�les of the

streamwise and spanwise velocity components of the main �ow near the surface along these

slices are shown in the local orthogonal coordinates in Fig. 3. The zero of the streamwise

local coordinate x coincides with the beginning of the slice. The spanwise velocity is

large enough (up to 7% of the streamwise velocity) for the development of vortices of

the cross�ow instability [44]. In the present paper, the stability of the boundary layers is

studied at zero angular frequency and the values of the spanwise wavenumber typical to

the development of stationary cross�ow vortices. In all numerical experiments, we �x the

disturbance generation point xjg = 0 as the beginning of the slice, with the observation

point xjo > 0 being varied.

In the (xjo , β)-plane, Fig. 4 shows the level lines of the maximumN -factors,Nmax(0, xjo),

of the optimal disturbances for both con�gurations, as well as the points at which a
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growth of stationary cross�ow vortices is observed. It is seen that for both con�gurations,

the regions of modal and non-modal instability have a signi�cant overlap. At the same

time, at relatively small values of β and su�ciently large values of xjo , only the non-modal

instability is observed, although it is characterized by relatively small maximumN -factors.

This is further illustrated in Fig. 5, which shows the dependence of the maximum N -

factors on −β for a �xed xjo . It is seen that, in addition to the global maximum in

the spanwise wavenumber, the dependence has a local maximum associated with the

optimal disturbance that has a small spanwise wavenumber and does not contain modes

growing downstream. For the boundary layer over the swept wing, the obtained result is

in qualitative agreement with the experimental observation [34], while for that over the

prolate spheroid this e�ect is discovered for the �rst time. Note that this e�ect suggests

the possibility of bypass transition for the considered con�gurations.

Fig. 6 shows the dependence of the total energy density ampli�cation of optimal

disturbances on x computed for various observation points. Fig. 7 shows the absolute

values of the disturbance velocity components. It is seen that at spanwise wavenumbers

speci�c to the development of stationary cross�ow vortices, the optimal disturbance

weakly depends on the observation point. In addition, as it is seen from Fig. 8, the shape

of the developed optimal disturbance is close to that of the leading local mode.

5. Conclusion

Using an original numerical method, we compute for the �rst time the downstream

propagation of optimal disturbances for two three-dimensional aerodynamic con�gurations:

a boundary layer over a �nite-span swept wing, and a boundary layer over a prolate

spheroid. The basis of this method is the projection of the solution to an initial-value

problem, which governs the propagation of the disturbances, onto an invariant subspace

of physically signi�cant eigenmodes at each step of numerical integration along the selected

lines of disturbance propagation.

In this work, the stability of the boundary layers was studied at zero angular frequency.

It is shown that there are two maxima of the disturbance energy ampli�cation in spanwise

wavenumbers. One of them corresponds to the development of stationary vortices of the

cross�ow instability, and the other one, at lower values of the spanwise wavenumber,

corresponds to the non-modal instability, previously observed in experiments on a swept

wing.

12



Additionally, the presented examples show that the proposed method can serve as a

basis for an engineering approach to the non-modal spatial stability analysis of various

boundary layers. In particular, the proposed method is prospective for predicting the

bypass laminar�turbulent transition within the framework of existing engineering approaches

based on the modal stability analysis by the eN -method.
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Fig. 1: The coupling structure of LOTRAN, the software package used.

Fig. 2: The windward surface of the swept wing (top), the side surface of the prolate

spheroid (bottom), and the slices along which the boundary layer stability is studied. The

slices are formed by external normals (black) to the �ow-exposed surface (gray) along the

line of disturbance propagation, with the projection of that line onto the surface being

shown in red.

Fig. 3: Streamwise (�rst column) and spanwise (second column) velocity of the main

�ow near the surface along the slice on the swept wing (top) and the prolate spheroid

(bottom). Line colors correspond to values of the streamwise coordinate x.

Fig. 4: Level lines of the maximumN -factors,Nmax(0, xjo), of the optimal disturbances

in the boundary layer along the slice on the swept wing (top) and the prolate spheroid

(bottom) in the (xjo , β)-plane. The white points denote the values xjo and β at which the

stationary cross�ow vortices grow. The right column shows the results at small β.

Fig. 5:Dependence of the maximumN -factors,Nmax(0, xjo), of the optimal disturbances

on −β for a �xed observation point, xjo , in the boundary layer along the slice on the swept

wing (left) and the prolate spheroid (right).

Fig. 6: Dependence on x of the total energy density ampli�cation, Ej(xjg , xjo), of

the optimal disturbances corresponding to various observation points: xjo = 0.09 (red),

xjo = 0.30 (green), and xjo = 0.54 (blue) for the swept wing (left) at β = −1500; and

xjo = 0.26 (red), xjo = 0.38 (green), xjo = 0.49 (blue) for the prolate spheroid (right) at

β = −3000.

Fig. 7: The absolute values of the velocity components of optimal disturbances corresponding

to various observation points: xjo = 0.09 (red), xjo = 0.30 (green), and xjo = 0.54 (blue)

for the swept wing (top) at β = −1500; and xjo = 0.26 (red), xjo = 0.38 (green), xjo = 0.49

(blue) for the prolate spheroid (bottom) at β = −3000.

Fig. 8: The absolute values of the velocity components of the developed optimal

disturbance (solid) and the leading local mode (dashed) corresponding to various observation

points: xjo = 0.09 (red), xjo = 0.30 (green), and xjo = 0.54 (blue) for the swept wing (top)

at β = −1500; and xjo = 0.26 (red), xjo = 0.38 (green), and xjo = 0.49 (blue) for the

prolate spheroid (bottom) at β = −3000.

14



Fig. 1

15



Fig. 2

Fig. 3

16



0 0.2 0.4 0.6
-2000

-1500

-1000

-500

0

2

4

6

8

0 0.2 0.4 0.6
-200

-150

-100

-50

0.4

0.6

0.8

1

0 0.2 0.4

-6000

-4000

-2000

0

5

10

0 0.2 0.4
-300

-200

-100

0.2

0.4

0.6

0.8

1

Fig. 4

0 500 1000 1500 2000

0

5

10

0 1000 2000 3000 4000 5000
0

5

10

Fig. 5

0 0.2 0.4
10

0

10
1

10
2

10
3

10
4

0 0.2 0.4
10

0

10
2

10
4

10
6

Fig. 6

17



0 5
0

1

2

3

4

5
10

-3

0 10 20 0 50

0 1
0

1

2

3
10

-3

0 10 20 0 50

Fig. 7

18



0 50
0

1

2

3

4

5
10

-3

0 1 2 0 2 4 6

0 50
0

1

2

3
10

-3

0 1 2 0 5

Fig. 8

19



Ñïèñîê ëèòåðàòóðû

[1] Landahl M.T. Wave breakdown and turbulence // SIAM J. Appl. Math. 1975. V. 28.

â½� 4. P. 735�756.

[2] Ellingsen T., Palm E. Stability of linear �ow // Phys. Fluids. 1975. V. 18. â½� 4.

P. 487�488.

[3] Landahl M.T. A note on an algebraic instability of inviscid parallel shear �ows // J.

Fluid. Mech. 1980. V. 98. â½� 2. P. 243�251.

[4] Brandt L. The lift-up e�ect: the linear mechanism behind transition and turbulence

in shear �ows // Eur. J. Mech. B/Fluid. 2014. V. 47. P. 80�96.

[5] Schmid P.J., Henningson D.S. Stability and Transition in Shear Flows. Springer,

2001. 558 pp.

[6] Farrell B.F. The initial growth of disturbances in a baroclinic �ow // J. Atmos. Sci.

1982. V. 39. P. 1663�1686.

[7] Farrell B.F. Optimal excitation of neutral Rossby waves // J. Atmos. Sci. 1988.

V. 45. â½� 2. P. 163�172.

[8] Farrell B.F. Optimal excitation of baroclinic waves // J. Atmos. Sci. 1989. V. 46.

â½� 9. P. 1193�1206.

[9] Farrell B.F. Optimal excitation of perturbations in viscous shear �ow // Phys. Fluid.

1988. V. 31. â½� 8. P. 2093�2102.

[10] Andersson P.A., Berggren M., Henningson D.S. Optimal disturbances and bypass

transition in boundary layers // Phys. Fluid. 1999. V. 11. â½� 1. P. 134�150.

[11] Luchini P. Reynolds-number-independent instability of the boundary layer over a

�at surface: optimal perturbations // J. Fluid. Mech. 2000. V. 404. P. 289�309.

[12] Reshotko E., Tumin A. Spatial theory of optimal disturbances in a circular pipe �ow

// Phys. Fluid. 2001. V. 13. P. 991�996.

[13] Biau D., Bottaro A. Transient growth and minimal defects: Two possible initial paths

of transition to turbulence in plane shear �ows // Phys. Fluid. 2004. V. 16. â½� 10.

P. 3515�3529.

20



[14] Boiko A.V., Ivanov A.V., Kachanov Yu.S., Mischenko D.A., Nechepurenko Yu.M.

Excitation of unsteady G�ortler vortices by localized surface nonuniformities // Theor.

Comput. Fluid Dyn. 2017. V. 31. â½� 1. P. 67�88.

[15] Boronin S.A., Healey J.J., Sazhin S.S. Non-modal stability of round viscous jets //

J. Fluid Mech. 2013. V. 716. P. 96�119.

[16] Ivanov O.O., Ashurov D.A., Gareev L.R., Vedeneev V.V. Non-modal perturbation

growth in a laminar jet: An experimental study // J. Fluid Mech. 2023. V. 963. A8.

[17] Tumin A., Reshotko E. Spatial theory of optimal disturbances in boundary layers //

Phys. Fluids. 2001. V. 13. P. 2097�2104.

[18] Tempelmann D., Hani� A., Henningson D.S. Spatial optimal growth in three-

dimensional boundary layers. // J. Fluid Mech. 2010. V. 646. P. 5�37.

[19] Tempelmann D., Hani� A., Henningson D.S. Spatial optimal growth in three-

dimensional compressible boundary layers. // J. Fluid Mech. 2012. V. 704. P. 251�

279.

[20] Towne A., Colonius T. One-way spatial integration of hyperbolic equations // J.

Comp. Phys. 2015. V. 300. P. 844�861.

[21] Rigas G., Colonius T., Beyar M. Stability of wall-bounded �ows using one-way

spatial integration of Navier-Stokes equations // 55-th AIAA Aerospace Sciences

Meeting, Grapevine, Texas. AIAA Paper. 2017. â½� 2017�1881.

[22] Zhu M., Towne A. Recursive one-way Navier-Stokes equations with PSE-like cost //

J. Comp. Phys. 2023. V. 473. P. 111744.

[23] Godunov S.K. Modern Aspects of Linear Algebra. American Mathematical Society,

Providence, USA, 1998.

[24] Zasko G.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M. Simulating

the propagation of boundary-layer disturbances by solving boundary-value and

initial-value problems // Russ. J. Numer. Anal. Math. Model. 2024. V. 39. â½� 1.

[25] Boiko A.V., Demyanko K.V., Zasko G.V., Nechepurenko Yu.M. On parabolization

of equations governing small disturbances in 2D boundary layers // Thermophys.

Aeromechanics. 2024. V. 31 (accepted).

21



[26] Boiko A.I., Demyanko K.V., Kirilovskiy S.V., Nechepurenko Yu.M., Poplavskaya

T.V. Modeling of transonic transitional three dimensional �ows for aerodynamic

applications // AIAA J. 2021. V. 59. P. 1�13.

[27] Boiko A.V., Demyanko K.V., Nechepurenko Yu.M. On computing the location of

laminar�turbulent transition in compressible boundary layers // Russ. J. Numer.

Anal. Math. Model. 2017. V. 32. P. 1�12.

[28] Boiko A.V., Demyanko K.V., Inozemtsev A.V., Kirilovskiy S.V., Nechepurenko

Yu.M., Paduchev A.P., Poplavskaya T.V. Determination of the Laminar�Turbulent

Transition Location in Numerical Simulations of Subsonic and Transonic Flows Past

a Flat Plate // Thermophys. Aeromechanics. 2019. V. 26. â½� 5. P. 629�637.

[29] Kirilovskiy S.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Poplavskaya

T.V., Sidorenko A.A. On integrating the LOTRAN 3.0 package into the ANSYS

�uent CFD software. // AIP Conf. Proc. 2019. V. 2125. Art. 030098.

[30] Poplavskaya T.V., Boiko A.V., Demyanko K.V., Kirilovskiy S.V., Nechepurenko

Yu.M. Numerical simulation of the transition to turbulence in subsonic and transonic

�ows // J. Phys.: Conf. Ser. 2019. V. 1359. Art. 012068.

[31] Kirilovskiy S.V., Boiko A.V., Demyanko K.V., Ivanov A.V., Nechepurenko Yu.M.,

Poplavskaya T.V. Numerical simulation of the laminar�turbulent transition on a

swept wing in a subsonic �ow // J. Phys.: Conf. Ser. 2019. V. 1359. Art. 012070.

[32] Menter F.R. Two-equation eddy-viscosity turbulence models for engineering

applications // AIAA Journal. 1994. V. 32. P. 1598�1605.

[33] Hani� A., Schmid P.J., Henningson D.S. Transient growth in compressible boundary

layer �ow // Phys. Fluid. 1996. V. 8. P. 826�837.

[34] Boiko A.V. Swept-Wing Boundary Layer Receptivity to a Steady Free-Stream Vortex

Disturbance // Fluid Dynamics. 2002. V. 37. P. 37�45.

[35] Mack L.M. Boundary-layer Linear Stability theory // In AGARD Report No. 709:

Special course on stability and transition of laminar �ow. 1984. P. 3�81.

[36] Schmid P.J. Nonmodal stability theory // Ann. Rev. Fluid Mech. 2007. V. 39. P. 129�

162.

22



[37] Golub G.H., van Loan C.F. Matrix Computations (4-th ed.). London: John Hopkins

University Press. 2013. 784 p.

[38] Ivanov A.V., Mischenko D.A., Boiko A.V. Method of the description of the laminar-

turbulent transition position on a swept wing in the �ow with an enhanced level of

free-stream turbulence // J. Appl. Mech. Tech. Phys. 2020. V. 61. P. 250�255.

[39] Boiko A.V., Ivanov A.V., Borodulin V.I., Mischenko D.A. Quanti�cation technique

of transition to turbulence in boundary layers using infrared thermography // Int. J.

Heat Mass Transf. 2022. V. 183. P. 122065.

[40] Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Zasko G.V. On the use of

probability-based methods for estimating the aerodynamic boundary-layer thickness

// Fluid. 2021. V. 6. â½� 8. P. 267.

[41] Kirilovskiy S.V., Boiko A.V., Demyanko K.V., Nechepurenko Yu.M., Poplavskaya

T.V. Simulation of the laminar-turbulent transition in the boundary layer of the

swept wing in the subsonic �ow at angles of attack // AIP Conf. Proc. 2020. V. 2288.

P. 1�6.

[42] Kreplin H.P., Vollmers H., Meier H.U. Measurements of the wall shear stress on an

inclined prolate spheroid // Z. Flugwiss. Weltraumforsch. 1982. V. 6. P. 248�252.

[43] Meier H.U. Experimental investigation of the boundary layer transition and

separation on a body of revolution // Z. Flugwiss. Weltraumforsch. 1980. V. 4. P. 65�

71.

[44] Boiko A.V. Receptivity of boundary layers to free stream axial vortices.

DLR:G�ottingen, Germany, 2000. IB 223�2000 A10. 60 p.

23


	1 Introduction
	2 Governing equations
	3 Non-modal analysis
	3.1 Downstream integration
	3.2 Computation of optimal disturbances

	4 Results
	5 Conclusion



