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1. Introduction

One of the possible scenarios of the laminar—turbulent transition is the so-called bypass
scenario, which is accompanied by the development of quasi-stationary disturbances dominated
by the streamwise velocity component. Such disturbances are called streaks or streaky
structures. Usually, the bypass scenario takes place at a high degree of the freestream
turbulence.

The streaks develop from streamwise vortices due to the lift-up effect |1|-{3]. The lift-up
effect is one of the main physical mechanisms responsible for a disturbance energy growth

at finite time (or space) intervals [1|. Mathematically, this phenomenon is caused by the
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non-orthogonality of eigenmodes of the linearized system governing the small-amplitude
disturbance propagation [5]. For some specific disturbances, the transient energy growth
might be of significant magnitude. The disturbance achieving maximum energy amplification
at finite time intervals is called an optimal disturbance |6]-]9]. In particular, the optimal
disturbances allow estimating various disturbance characteristics within the bypass scenario
[10].

Spatial, both stationary and traveling, optimal disturbances of incompressible laminar
boundary layers were first computed for the Blasius boundary layer [10, 11]. In these
studies, it is taken into account that the main flow is non-parallel, i.e. the boundary
layer thickness increases downstream. The spatial optimal disturbances are found for the
Poiseuille flow in a circular pipe [12] and a plane channel [13]|, and for the boundary
layer over a weakly concave surface [14]. In addition, optimal disturbances are studied for
viscous incompressible jets |15, 16]. For compressible boundary layers, the spatial optimal
disturbances were first computed in the work [17]|, with the local-parallel approximation
being applied. For all these main flows with the disturbance parameters ensuring that
any individual eigenmode decays downstream, it is shown that the maximum energy
amplification is achieved by stationary vortices either periodic in spanwise direction or
periodic in azimuthal direction (for the circular-pipe flow). The downstream propagation
of optimal disturbances is studied both for the incompressible Falkner—Skan—Cooke boundary
layer [18] and the compressible boundary layer with local self-similarity [19]. In these
studies, non-parallel boundary layers are considered as well, and a variant of PSE method
is used for describing the downstream propagation of disturbances. At parameter values
ensuring the main boundary-layer linear instability, it is shown that the energy growth
of optimal disturbances might exceed the growth predicted for modal instabilities by
several orders of magnitude. In addition, the maximum energy amplification is achieved
by traveling disturbances.

In the most studies mentioned above, the downstream propagation of small-amplitude
disturbances is governed by equations, where the streamwise viscous dissipation terms as
well as the streamwise pressure gradient are regarded as negligible. The equations thus
obtained are parabolic, and the streamwise initial-value problem is well-posed for them.
There is another approach, which does not require neglecting these terms in original
equations. Namely, for modeling the downstream propagation of disturbances, one can
project the numerical solution onto a subspace of physically relevant eigenmodes. This idea

|17] is developed |20, 21, 22| by the authors, who use the abbreviation OWNS (One-Way



spatial integration of the Navier—Stokes equations) for this class of numerical methods.
In the present paper, we use an original implementation of this approach, where the
spectral projector [23] is computed at each integration step to exclude the contribution of
non-physical modes. The non-physical modes are defined as those propagating upstream
and growing downstream at large rates [24]. This method was tested for the downstream
propagation of both Tollmien—Schlichting waves and Goertler vortices in the non-parallel
boundary layer over a slightly concave plate [25, 24].

In all the above-mentioned studies, the non-modal stability analysis is performed for
canonical main flows, which depend either on one or two spatial coordinates. The present
paper aims at the development of an approach for the non-modal stability analysis of
compressible boundary layers over three-dimensional aerodynamic configurations. This
approach can be served as a basis for predicting the onset of the bypass laminar—turbulent
transition in engineering applications. In addition, the paper discusses how to integrate
this approach into a modern technology of the transition prediction by the eV-method with
the example of such a technology proposed in the work [26]. By the developed approach,
we compute the spatial optimal disturbances for two three-dimensional aerodynamic
configurations: a boundary layer over a swept wing of finite span, and a boundary layer
over a prolate spheroid. Such a computation is done for the first time.

Over the last ten years, the authors of the present paper have been developing LOTRAN
|26, 27], a software package designed for computing the position of the laminar—turbulent
transition for three-dimensional aerodynamic boundary layers over flow-exposed bodies of
small curvature. LOTRAN is widely used both for fundamental scientific research and for
engineering purposes |28, 29, 30, 31, 26]. The coupling structure of LOTRAN is presented
in Fig. 1.

LOTRAN is designed to work together with any CFD-code that computes a laminar—
turbulent flow over a given flow-exposed body, using some turbulence model (e.g., k-w
SST [32]) and a given intermittency distribution. To compute the transition position,
an iterative process starts. At each iteration, the laminar—turbulent flow is computed by
CFD-code, with zero intermittency being set for the assumed laminar domain (and slightly
downstream) and unit intermittency being set elsewhere. The obtained laminar—turbulent
flow data, such as velocity components, pressure, temperature, and intermittency, are
taken as an input for the Main Flow module; this module interpolates the data from the
CFD-code grid to a tetrahedral grid. Next, the Boundary Layer module constructs 2D-

slices along disturbance propagation lines in the domain of interest on the body surface.



The procedure for constructing the slices is described in detail in the work [26]. Then,
this module introduces curvilinear orthogonal coordinates along the slices, constructing a
computational grid within these coordinates and interpolating the flow data to that grid
from the previous tetrahedral grid. Then, for each slice, the Stability Analysis module
computes the neutral stability curves as well as the growth rates of the most unstable local
modes being harmonic in time and spanwise coordinate. The downstream propagation
of small-amplitude disturbances is governed by the viscous compressible heat-and-mass-
transfer equations linearized with respect to the main flow [27]. These equations are briefly
described in Section 2 of the present paper. Then, along each slice, the Transition Analysis
module finds the transition onset by the eV-method and evaluates the transition length.
These results are given to the CFD-code to set a new intermittency distribution, and
hence compute a new laminar—turbulent flow. Such an iterative process stops when the
transition position converges with an acceptable accuracy.

Section 3 describes a numerical method for computing the spatial optimal disturbances
of three-dimensional boundary layers. A new module, Non-Modal Analysis, implements
this method within LOTRAN. The optimal disturbances are computed along the same
slices as for the modal analysis. To this end, we numerically solve streamwise initial-value
problems for the same small-amplitude disturbance propagation equations as within the
modal analysis, while the original method |25, 21] is used for the numerical integration.
As a result of the numerical integration with different initial values, we find the matrix
of fundamental solutions. This matrix allows computing the spatial optimal disturbances,
using the discrete analogue of the total energy density functional |17, 33].

Each slice consists of a few surface normals with the main flow data. These normals
are called main normals. The distance between the adjacent main normals approximately
equals the streamwise size of grid cells, which are used for the main-flow computation.
However, such a distance is usually not small enough to be chosen as the streamwise
integration step for modeling the downstream propagation of disturbances. Therefore, we
introduce additional uniform grids between the main normals assuming that the main flow
does not change between the adjacent main normals. The matrix of fundamental solutions
between any two main normals is obtained by the multiplication of those between the
adjacent main normals. This allows us to naturally parallelize the algorithm as well as
to reduce the computational cost of parametric computations. Specifically, if all matrices
of fundamental solutions between the adjacent main normals are found, then the optimal

disturbances might be found efficiently for given pair of generation and observation points.

4



Section 4 shows the results of numerical experiments with the proposed numerical
method and the two above-mentioned configurations. In the range of spanwise wavenumbers
favorable for the development of crossflow vortices, it is shown that the energy amplification
has an additional local maximum with the spanwise wavenumber being small. This phenomenon
was previously observed in the laboratory experiments [34] for a swept wing, but was not
confirmed numerically. For a prolate spheroid, this effect has not previously been found
either experimentally or numerically. Section 5 summarizes the results of the present
paper.

Throughout the present paper, ||.||o denotes the 2-norm for vectors and matrices, I
denotes the identity matrix whose order is clear from the context, and '+’ denotes the

symbol of conjugate transposition.

2. Governing equations

In the Cartesian coordinates (x1, z9, x3), let us consider the non-dimensional governing
equations of viscous compressible media, which represent the conservation law of momentum,
energy and mass, and the ideal gas law. Written with the tensor summation convention,
these equations are as follows
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Here u; are the velocity components, p is the density, p is the static pressure, 1" is the
temperature, p and A\ are the first and second viscosity coefficients, x is the thermal
conductivity, and v is the adiabatic index. The Prandtl number, Mach number and
Reynolds number are defined as
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where the specific gas constant is denoted by R, and the specific heat at constant pressure

by c,. Here the subscript ref refers to dimensional scales, with L, and U, denoting
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referential length and velocity scales. We assume that both the dynamic viscosity p = p(7)
and the heat conductivity k = k(7T') in (2.1) depend only on temperature, with these
dependencies being given explicitly [35, 27]. For the second viscosity coefficient, the Stokes
hypothesis A = —2p/3 is assumed.

Suppose the system (2.1) has a stationary solution with the velocity components w;,
temperature T, density p, pressure p, and the coefficients i = pu(T), A = A\(T) and & =
#(T). In the sequel, such a stationary solution is called the main flow. The propagation of
small-amplitude disturbances against the main flow is governed by the following linearized
equations [27]
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Here the disturbance velocities are denoted by u;, the disturbance temperature by 7", the
disturbance density by o, the disturbance pressure by p’, and fr = df /dT(T).

Within LOTRAN, the modal stability analysis is performed for laminar boundary
layers over surfaces of small curvature. The disturbance propagation is studied along
the boundary-layer slices (see Introduction), where the following curvilinear orthogonal
coordinates are used: y is the distance to the surface along the normal, x is the arc length
from the beginning of the slice to the base of this normal along the slice, and z is the
spanwise coordinate. The main flow is assumed to be computed by a CFD-code. As for the
referential dimensional scales in (2.2), we use those of the freestream. The dimensionless

numbers (2.2) thus defined are denoted by Pr.,, My, and Re.



We assume that the main flow does not depend on z along the slice, and hence only

disturbances of the form

Real{ e ==+ (2.4)

are considered, where w is the angular frequency, (8 is the spanwise wavenumber, and ¢ is
the time. Here ¢ is the complex-valued vector of disturbance amplitudes that consists of
the streamwise, normal and spanwise velocities, the pressure, and the temperature; and
these amplitudes depend only on z and y. We also assume that the surface curvature
is small, and the normal velocity of the main flow is negligible. In addition, we apply
the local-parallel approximation, i.e. the main-flow components depend on z, but their
derivatives on x are regarded as negligible.

Based on (2.3) but under the above-mentioned assumptions, one can derive [27] the
equations governing the propagation of disturbance amplitudes of the form (2.4). In the
present paper, we use these equations, with the disturbance amplitudes satisfying zero
boundary conditions at y = 0 and y = oo.

Optimal disturbances are computed along the boundary-layer slices, assuming that
the disturbances are of the form (2.4). The downstream propagation of the optimal

disturbances is governed by the same equations |27] as for the modal stability analysis.

3. Non-modal analysis

The governing equations, which are discussed in Section 2, are approximated in the
normal direction y by a collocation method. Then, the disturbance amplitudes become
vector functions depending only on x; and we keep the same notation for the disturbance
amplitudes both before and after the spatial approximation. After the approximation, the

disturbance amplitudes satisfy the system of ordinary differential equations [27]

d? d
Ad—;f + Bd—f + (WC— D) — 0. (3.5)

Here A, B, C and D are square z-dependent matrices of order 5n,,, where n,, is the number
of the interior grid nodes in the normal direction. It is worth noting that A is a diagonal
matrix whose last n, diagonal entries are zero, and C is a nearly-diagonal matrix. Let
us introduce four additional variables that represent the derivatives with respect to x
of the disturbance velocity components and temperature. Then, equation (3.5) might be
rewritten as the system of first-order ordinary differential equations

da _

(3.6)

7



where M(z) is an z-dependent matrix of order 9n,, and q = q(z) is a 9n,~component
vector function.

Optimal disturbances largely depend on a functional, which is used for the optimization
|36]. In the studies |33, 17, 19] of optimal disturbances of compressible boundary layers,
the functional

—+00

T p
E= [ p(Ju*+ |v]? )+ ———|p/? _|T* d 3.7
[ 7R+ o )+ o+ TRy 6

0

of total disturbance energy density is used, where u is the streamwise velocity amplitude,
v is the normal velocity amplitude, w is the spanwise velocity amplitude, p is the density
amplitude, and T is the temperature amplitude. Note that both the main-flow density p
and the main-flow temperature 7" depend both on y and z, in general. Within LOTRAN,
the disturbance pressure p appears in the governing equations instead of the disturbance
density p. Using the relation

p=pT+Tp (3.8)

that comes from the ideal gas law, the discrete analogue of (3.7) might be rewritten as

q*Eq, where E = E(z) is an z-dependent Hermitian matrix of rank 5n,,.

3.1. Downstream integration

Each slice consists of a few main normals with the main flow data. We introduce
additional uniform grids between the main normals with the same number of interior grid
nodes n,; and it is assumed that the main flow does not change between the adjacent
main normals. The streamwise coordinates of the main normal bases are denoted by
x1 < Ty < ..., the subgrid step by h; = (x;11 — z;)/(n, + 1), and the subgrid nodes by
T = xj + (k= 1)h;.

Consider the streamwise initial-value problem for the system (3.6) with the initial node
xj, the final node z;;4, and the initial condition q(z;) = q;. At x;, we compute the system
matrix M; = M(x;) and use it at each integration step. The initial-value problem allows for
non-physical solutions growing downstream at large rates and propagating upstream [17].
To exclude such solutions, we use standard numerical schemes combined with the spectral
projection such as that for viscous incompressible flows [25, 241]. We project the numerical
solution onto an invariant subspace of M; corresponding to the physically relevant subset

A; of its spectrum.



The subset A; consists of all eigenvalues A satisfying the inequality Real 1/A < 0.8 |5,
where [ is the spanwise wavenumber [26]. This estimation is based on considering the
asymptotic behavior of the branches of continuous spectrum of the problem [17]. It can
be shown analytically that for the part of continuous spectrum in the right half-plane
(corresponding to the upstream traveling disturbances) Imag(1/\) > |3|. The coefficient
0.8 is introduced just to be on the safe side to guarantee that no upstream traveling mode
is present in A;. Note that in the cases under consideration linear instability occurs only
at quite large values of |3|. Meanwhile, as our tests showed, the leading discrete mode
always has Real 1/\ < 0.8 |3|. Outside of the linear instability region the inequality can
be changed to Real 1/\ < 0. Numerical experiments show that the physically relevant
eigenvalues thus defined are well separated from the non-physical ones [24].

The spectral projectors at each j are computed using the Schur decomposition [37]
of M;. The spectral projector thus computed appears as P; = X;Y; [23]|, where X, is a
rectangular matrix whose columns form the orthonormal basis in the invariant subspace of
M; corresponding to the subset A;, and Y; is a rectangular matrix ensuring the following
identities

X;Y;M; = X;S,Y; = XY, Y,X; =1
being valid, where S; = X7M;X; is the restriction of M; to the invariant subspace.
At the first integration step we use the implicit Euler method modified as follows

- Qj2 — Ajn _ -
q;1 = Y;q;, Sj% = 4q;2;
J

where q; is the solution at the j-th main normal. At other integration steps, we use the

BDF-2 scheme modified as follows

36 — 4Qe-1 + Qjr—2 -
S‘ ] 75 75 — -
J th qjvk;
After the last step done, we put q;+1 = Pj11X;qQ;n, 12

To compute the matrix of fundamental solutions ®; between normals j and j +
1, we take the columns of the identity matrix as the initial condition q;;. Then, the
columns of ®; are the vectors q;,, 42, with the matrix ®; satisfying the equality q;;1 =
P;11X;®,Y;q; for any initial condition q;. Thus, one can represent the numerical solution

of the streamwise initial-value problem between the j,-th and j,-th main normals as
Qo = PioXjom1Pjp1Y o1+ X, 5, Y5y dj, = X5y 5, Y5, 5,

where

F = onon—l(bjo—l o ng+1ng<ng.

jgvjo
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3.2. Computation of optimal disturbances

We say that the optimal disturbance is a disturbance being generated at x = z;, and
achieving the maximum energy amplification at x = x;,. In the sequel, xz;, is called the
generation point, and z;, is called the observation point. In addition, we suppose that the
optimal disturbance belongs to an invariant subspace of physically relevant eigenmodes of
a given dimension m. This invariant subspace is constructed in two steps. First, we select
the subset A;, of the spectrum of M; , as described above. Next, among the eigenvalues
of A;,, we select m ones having the largest values of Real 1/X and use the obtained set
instead of A; , keeping the same notation. Since the rank of the matrix E(x) is equal
to 5n,, then m should not exceed 5n,. For numerical experiments, we choose m = 2n,,
since for a fixed number of grid nodes n,,, the maximum disturbance energy amplification
converges with further increase in m.

The optimal disturbance is computed by solving the problem that consist in maximizing
the energy amplification of disturbances from the subspace associated with A;,:

. q;, E;,q;, ’ (3.9)
ajy =Py, 70 q; Ej, qj,
where E; = E(z;).

By L; denote the lower triangular matrix that forms the factorization E; = L7L;. Let
L;X; = Q;R; be the QR-decomposition [37] with the unitary rectangular matrix Q; and
the upper triangular matrix R;. Let q; = Y,q; and pu; = R;q;. Then

_ -1 2
GCEe Ll L5 X5 @l IR Fi R, e, I3
q;gEqujg ||ngqjg % HL]QX]gq]g 2

2 Bl 125, ;
Therefore, the solution of the problem (3.9) is reduced to computing the largest

singular value of the matrix R; F;

gﬁjoRj_gl and the corresponding normalized right singular

vector p?:’t. The optimal disturbance in physical variables is then computed by the
formula q?ft = ngRj_gl u;?ft, and its downstream propagation is governed by the formula

q?pt = XijgJngqjo-ft for j > j,. At the same time, the value

opt

&, ws,) = (o) By = [u5™ |3

is the total energy density of the optimal disturbance at a point x = z;. For the point

7;,, the maximum N-factor among disturbances generated at x;, is thus equal to
Nmax(xjg7 xjo) = 5 ln g] ('r]q ) x]o)
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4. Results

This section discussesresultsof the computationof optimaldisturbancesfor two

configurationsillustratedin Fig.1 in the global Cartesiancoordinates (X, Y, Z):

A) the windward surface of swept wing at an angle of attack of —5°. The wing has the
modified NACA 67 1-215 laminarized airfoil with a chord length (normal to the leading
edge) of 0.7 m, and 45° sweep angle. The freestream parameters are as follows: the velocity
Uso = 27 m/s, the density po = 1.18 kg/m?, and the kinematic viscosity v, = 1.57x 107°
m?/s. Such parameter values correspond to the Reynolds number Re,, = 1.72 x 10° and
the Mach number M., = 0.08. This configuration corresponds to experiments [38, 39|
on the laminar-turbulent transition in boundary layers over the swept wing SW-45 at
various angles of attack. Data on the considered laminar boundary layer are computed
|26, 10, 41] by ANSYS Fluent in a digital analogue of the test section of the T-324 wind
tunnel of ITAM SB RAS.

B) prolate spheroid at an angle of attack of +10°. The spheroid has a length of 2.4
m, and an aspect ratio of 6 : 1 : 1. The freestream parameters are as follows: the velocity
Uy = 45 m/s, the density p, = 1.23 kg/m3, and the kinematic viscosity vy, = 1.50x 1075
m?/s. Such parameter values correspond to the Reynolds number Re,, = 7.20 x 10° and
the Mach number M., = 0.13. This configuration corresponds to experiments [12, 13| on
the laminar—turbulent transition in boundary layers over bodies of revolution. Data on
the considered laminar boundary layer are computed [26] using ANSYS Fluent.

The boundary layer stability is analyzed along the slices shown in Fig. 2. Profiles of the
streamwise and spanwise velocity components of the main flow near the surface along these
slices are shown in the local orthogonal coordinates in Fig. 3. The zero of the streamwise
local coordinate x coincides with the beginning of the slice. The spanwise velocity is
large enough (up to 7% of the streamwise velocity) for the development of vortices of
the crossflow instability [11]. In the present paper, the stability of the boundary layers is
studied at zero angular frequency and the values of the spanwise wavenumber typical to
the development of stationary crossflow vortices. In all numerical experiments, we fix the
disturbance generation point x;, = 0 as the beginning of the slice, with the observation
point z;, > 0 being varied.

In the (z;,, 3)-plane, Fig. 4 shows the level lines of the maximum N-factors, Nyax(0, z;,),

of the optimal disturbances for both configurations, as well as the points at which a
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growth of stationary crossflow vortices is observed. It is seen that for both configurations,
the regions of modal and non-modal instability have a significant overlap. At the same
time, at relatively small values of 3 and sufficiently large values of x;,, only the non-modal
instability is observed, although it is characterized by relatively small maximum N-factors.
This is further illustrated in Fig. 5, which shows the dependence of the maximum N-
factors on —f for a fixed z; . It is seen that, in addition to the global maximum in
the spanwise wavenumber, the dependence has a local maximum associated with the
optimal disturbance that has a small spanwise wavenumber and does not contain modes
growing downstream. For the boundary layer over the swept wing, the obtained result is
in qualitative agreement with the experimental observation [31], while for that over the
prolate spheroid this effect is discovered for the first time. Note that this effect suggests
the possibility of bypass transition for the considered configurations.

Fig. 6 shows the dependence of the total energy density amplification of optimal
disturbances on x computed for various observation points. Fig. 7 shows the absolute
values of the disturbance velocity components. It is seen that at spanwise wavenumbers
specific to the development of stationary crossflow vortices, the optimal disturbance
weakly depends on the observation point. In addition, as it is seen from Fig. 8, the shape

of the developed optimal disturbance is close to that of the leading local mode.

5. Conclusion

Using an original numerical method, we compute for the first time the downstream
propagation of optimal disturbances for two three-dimensional aerodynamic configurations:
a boundary layer over a finite-span swept wing, and a boundary layer over a prolate
spheroid. The basis of this method is the projection of the solution to an initial-value
problem, which governs the propagation of the disturbances, onto an invariant subspace
of physically significant eigenmodes at each step of numerical integration along the selected
lines of disturbance propagation.

In this work, the stability of the boundary layers was studied at zero angular frequency.
It is shown that there are two maxima of the disturbance energy amplification in spanwise
wavenumbers. One of them corresponds to the development of stationary vortices of the
crossflow instability, and the other one, at lower values of the spanwise wavenumber,
corresponds to the non-modal instability, previously observed in experiments on a swept

wing.
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Additionally, the presented examples show that the proposed method can serve as a
basis for an engineering approach to the non-modal spatial stability analysis of various
boundary layers. In particular, the proposed method is prospective for predicting the
bypass laminar—turbulent transition within the framework of existing engineering approaches

based on the modal stability analysis by the eV-method.
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Fig. 1: The coupling structure of LOTRAN, the software package used.

Fig. 2: The windward surface of the swept wing (top), the side surface of the prolate
spheroid (bottom), and the slices along which the boundary layer stability is studied. The
slices are formed by external normals (black) to the flow-exposed surface (gray) along the
line of disturbance propagation, with the projection of that line onto the surface being
shown in red.

Fig. 3: Streamwise (first column) and spanwise (second column) velocity of the main
flow near the surface along the slice on the swept wing (top) and the prolate spheroid
(bottom). Line colors correspond to values of the streamwise coordinate x.

Fig. 4: Level lines of the maximum N-factors, Npax(0, x;, ), of the optimal disturbances
in the boundary layer along the slice on the swept wing (top) and the prolate spheroid
(bottom) in the (x;,, 8)-plane. The white points denote the values x;, and § at which the
stationary crossflow vortices grow. The right column shows the results at small 5.

Fig. 5: Dependence of the maximum N-factors, Nyax(0, z;, ), of the optimal disturbances
on —/ for a fixed observation point, z; , in the boundary layer along the slice on the swept
wing (left) and the prolate spheroid (right).

Fig. 6: Dependence on x of the total energy density amplification, &;(x;,,;,), of
the optimal disturbances corresponding to various observation points: z; = 0.09 (red),
xj, = 0.30 (green), and z; = 0.54 (blue) for the swept wing (left) at § = —1500; and
x;, = 0.26 (red), xz;, = 0.38 (green), z; = 0.49 (blue) for the prolate spheroid (right) at
B = —3000.

Fig. 7: The absolute values of the velocity components of optimal disturbances corresponding
to various observation points: z;, = 0.09 (red), x;, = 0.30 (green), and x;, = 0.54 (blue)
for the swept wing (top) at § = —1500; and x;, = 0.26 (red), z;, = 0.38 (green), x;, = 0.49
(blue) for the prolate spheroid (bottom) at 5 = —3000.

Fig. 8: The absolute values of the velocity components of the developed optimal
disturbance (solid) and the leading local mode (dashed) corresponding to various observation
points: z;, = 0.09 (red), z;, = 0.30 (green), and z;, = 0.54 (blue) for the swept wing (top)
at 8 = —1500; and z;, = 0.26 (red), z;, = 0.38 (green), and x;, = 0.49 (blue) for the
prolate spheroid (bottom) at 5 = —3000.
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