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In the present paper, we propose a numerical method for modeling the downstream propagation of optimal disturbances
in compressible boundary layers over three-dimensional aerodynamic configurations. At each integration step, the
method projects the numerical solution of governing equations onto an invariant subspace of physically relevant
eigenmodes; and the numerical integration is performed along the lines of disturbance propagation. The propagation
of optimal disturbances is studied in a wide range of parameters for two configurations: a boundary layer over a swept
wing of finite span, and a boundary layer over a prolate spheroid. It is found that the dependence of the disturbance
energy amplification on the spanwise wavenumber has two local maxima. It is discussed how to combine the developed
method with the modern approaches, which are designed to predict the onset of laminar-turbulent transition using the
eN-method.
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1. INTRODUCTION

One of the possible scenarios of the laminar-turbulent transition is the so-called bypass scenario, which is
accompanied by the development of quasi-stationary disturbances dominated by the streamwise velocity component.
Such disturbances are called streaks or streaky structures. Usually, the bypass scenario takes place at a high degree of the
freestream turbulence.

The streaks develop from streamwise vortices due to the lift-up effect [1]–[3]. The lift-up effect is one of the main
physical mechanisms responsible for a disturbance energy growth at finite time (or space) intervals [4]. Mathematically,
this phenomenon is caused by the non-orthogonality of eigenmodes of the linearized system governing the small-
amplitude disturbance propagation [5]. For some specific disturbances, the transient energy growth might be of significant
magnitude. The disturbance achieving maximum energy amplification at finite time intervals is called an optimal
disturbance [6]–[9]. In particular, the optimal disturbances allow estimating various disturbance characteristics within
the bypass scenario [10].

Spatial, both stationary and traveling, optimal disturbances of incompressible laminar boundary layers were first
computed for the Blasius boundary layer [10, 11]. In these studies, it is taken into account that the main flow is non-
parallel, i.e. the boundary layer thickness increases downstream. The spatial optimal disturbances are found for the
Poiseuille flow in a circular pipe [12] and a plane channel [13], and for the boundary layer over a weakly concave sur-
face [14]. In addition, optimal disturbances are studied for viscous incompressible jets [15,16]. For compressible boundary
layers, the spatial optimal disturbances were first computed in the work [17], with the local-parallel approximation
being applied. For all these main flows with the disturbance parameters ensuring that any individual eigenmode decays
downstream, it is shown that the maximum energy amplification is achieved by stationary vortices either periodic in
spanwise direction or periodic in azimuthal direction (for the circular-pipe flow). The downstream propagation of optimal
disturbances is studied both for the incompressible Falkner–Skan–Cooke boundary layer [18] and the compressible
boundary layer with local self-similarity [19]. In these studies, non-parallel boundary layers are considered as well, and a
variant of PSE method is used for describing the downstream propagation of disturbances. At parameter values ensuring
the main boundary-layer linear instability, it is shown that the energy growth of optimal disturbances might exceed the
growth predicted for modal instabilities by several orders of magnitude. In addition, the maximum energy amplification
is achieved by traveling disturbances.
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In the most studies mentioned above, the downstream propagation of small-amplitude disturbances is governed by
equations, where the streamwise viscous dissipation terms as well as the streamwise pressure gradient are regarded as
negligible. The equations thus obtained are parabolic, and the streamwise initial-value problem is well-posed for them.
There is another approach, which does not require neglecting these terms in original equations. Namely, for modeling the
downstream propagation of disturbances, one can project the numerical solution onto a subspace of physically relevant
eigenmodes. This idea [17] is developed [20–22] by the authors, who use the abbreviation OWNS (One-Way spatial
integration of the Navier–Stokes equations) for this class of numerical methods. In the present paper, we use an original
implementation of this approach, where the spectral projector [23] is computed at each integration step to exclude the
contribution of non-physical modes. The non-physical modes are defined as those propagating upstream and growing
downstream at large rates [24]. This method was tested for the downstream propagation of both Tollmien–Schlichting
waves and Goertler vortices in the non-parallel boundary layer over a slightly concave plate [24, 25].

In all the above-mentioned studies, the non-modal stability analysis is performed for canonical main flows, which
depend either on one or two spatial coordinates. The present paper aims at the development of an approach for the
non-modal stability analysis of compressible boundary layers over three-dimensional aerodynamic configurations. This
approach can be served as a basis for predicting the onset of the bypass laminar-turbulent transition in engineering
applications. In addition, the paper discusses how to integrate this approach into a modern technology of the transition
prediction by the eN-method with the example of such a technology proposed in the work [26]. By the developed approach,
we compute the spatial optimal disturbances for two three-dimensional aerodynamic configurations: a boundary layer over
a swept wing of finite span, and a boundary layer over a prolate spheroid. Such a computation is done for the first time.

Over the last ten years, the authors of the present paper have been developing LOTRAN [26, 27], a software package
designed for computing the position of the laminar-turbulent transition for three-dimensional aerodynamic boundary
layers over flow-exposed bodies of small curvature. LOTRAN is widely used both for fundamental scientific research and
for engineering purposes [26, 28–31]. The coupling structure of LOTRAN is presented in Fig. 1.

LOTRAN is designed to work together with any CFD-code that computes a laminar-turbulent flow over a given flow-
exposed body, using some turbulence model (e.g., k-ω SST [32]) and a given intermittency distribution. To compute
the transition position, an iterative process starts. At each iteration, the laminar-turbulent flow is computed by CFD-
code, with zero intermittency being set for the assumed laminar domain (and slightly downstream) and unit intermittency
being set elsewhere. The obtained laminar-turbulent flow data, such as velocity components, pressure, temperature, and
intermittency, are taken as an input for the Main Flow module; this module interpolates the data from the CFD-code
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f low solution

N-factor distribution

LOTRAN

Main Flow
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Stability Analysis

Transition Analysis

Non-Modal Analysis
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Fig. 1. The coupling structure of LOTRAN, the software package used.
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grid to a tetrahedral grid. Next, the Boundary Layer module constructs 2D-slices along disturbance propagation lines in
the domain of interest on the body surface. The procedure for constructing the slices is described in detail in the work
[26]. Then, this module introduces curvilinear orthogonal coordinates along the slices, constructing a computational grid
within these coordinates and interpolating the flow data to that grid from the previous tetrahedral grid. Then, for each slice,
the Stability Analysis module computes the neutral stability curves as well as the growth rates of the most unstable local
modes being harmonic in time and spanwise coordinate. The downstream propagation of small-amplitude disturbances
is governed by the viscous compressible heat-and-mass-transfer equations linearized with respect to the main flow [27].
These equations are briefly described in Section 2 of the present paper. Then, along each slice, the Transition Analysis
module finds the transition onset by the eN-method and evaluates the transition length. These results are given to the
CFD-code to set a new intermittency distribution, and hence compute a new laminar-turbulent flow. Such an iterative
process stops when the transition position converges with an acceptable accuracy.

Section 3 describes a numerical method for computing the spatial optimal disturbances of three-dimensional boundary
layers. A new module, Non-Modal Analysis, implements this method within LOTRAN. The optimal disturbances are
computed along the same slices as for the modal analysis. To this end, we numerically solve streamwise initial-value
problems for the same small-amplitude disturbance propagation equations as within the modal analysis, while the original
method [24,25] is used for the numerical integration. As a result of the numerical integration with different initial values,
we find the matrix of fundamental solutions. This matrix allows computing the spatial optimal disturbances, using the
discrete analogue of the total energy density functional [17, 33].

Each slice consists of a few surface normals with the main flow data. These normals are called main normals. The
distance between the adjacent main normals approximately equals the streamwise size of grid cells, which are used for the
main-flow computation. However, such a distance is usually not small enough to be chosen as the streamwise integration
step for modeling the downstream propagation of disturbances. Therefore, we introduce additional uniform grids between
the main normals assuming that the main flow does not change between the adjacent main normals. The matrix of
fundamental solutions between any two main normals is obtained by the multiplication of those between the adjacent main
normals. This allows us to naturally parallelize the algorithm as well as to reduce the computational cost of parametric
computations. Specifically, if all matrices of fundamental solutions between the adjacent main normals are found, then
the optimal disturbances might be found efficiently for given pair of generation and observation points.

Section 4 shows the results of numerical experiments with the proposed numerical method and the two above-
mentioned configurations. In the range of spanwise wavenumbers favorable for the development of crossflow vortices,
it is shown that the energy amplification has an additional local maximum with the spanwise wavenumber being small.
This phenomenon was previously observed in the laboratory experiments [34] for a swept wing, but was not confirmed
numerically. For a prolate spheroid, this effect has not previously been found either experimentally or numerically.
Section 5 summarizes the results of the present paper.

Throughout the present paper, ‖.‖2 denotes the 2-norm for vectors and matrices, I denotes the identity matrix whose
order is clear from the context, and ′*′ denotes the symbol of conjugate transposition.

2. GOVERNING EQUATIONS

In the Cartesian coordinates (x1, x2, x3), let us consider the non-dimensional governing equations of viscous
compressible media, which represent the conservation law of momentum, energy and mass, and the ideal gas law. Written
with the tensor summation convention, these equations are as follows

ρ
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where

σi j = 2µei j + λekkδi j, ei j =
1
2

(︂
∂ui

∂x j
+
∂u j

∂xi

)︂
, Π = σi jei j.

Here u j are the velocity components, ρ is the density, p is the static pressure, T is the temperature, µ and λ are the first
and second viscosity coefficients, κ is the thermal conductivity, and γ is the adiabatic index. The Prandtl number, Mach
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number and Reynolds number are defined as

Pr =
cpµref

κref
, M =

Uref
√
γRTref

, Re =
Uref Lrefρref

µref
, (2.2)

where the specific gas constant is denoted by R, and the specific heat at constant pressure by cp. Here the subscript ref refers
to dimensional scales, with Lref and Uref denoting referential length and velocity scales. We assume that both the dynamic
viscosity µ = µ(T ) and the heat conductivity κ = κ(T ) in (2.1) depend only on temperature, with these dependencies being
given explicitly [27, 35]. For the second viscosity coefficient, the Stokes hypothesis λ = −2µ/3 is assumed.

Suppose the system (2.1) has a stationary solution with the velocity components ūi, temperature T̄ , density ρ̄, pressure
p̄, and the coefficients µ̄ = µ(T̄ ), λ̄ = λ(T̄ ) and κ̄ = κ(T̄ ). In the sequel, such a stationary solution is called the main flow. The
propagation of small-amplitude disturbances against the main flow is governed by the following linearized equations [27]
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+ ū j
∂u′i
∂x j
+ u′j
∂ūi
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Here the disturbance velocities are denoted by u′i , the disturbance temperature by T ′, the disturbance density by ρ′, the
disturbance pressure by p′, and f̄T = d f /dT (T̄ ).

Within LOTRAN, the modal stability analysis is performed for laminar boundary layers over surfaces of small
curvature. The disturbance propagation is studied along the boundary-layer slices (see Introduction), where the following
curvilinear orthogonal coordinates are used: y is the distance to the surface along the normal, x is the arc length from the
beginning of the slice to the base of this normal along the slice, and z is the spanwise coordinate. The main flow is assumed
to be computed by a CFD-code. As for the referential dimensional scales in (2.2), we use those of the freestream. The
dimensionless numbers (2.2) thus defined are denoted by Pr∞, M∞ and Re∞.

We assume that the main flow does not depend on z along the slice, and hence only disturbances of the form

Real{ϕei(βz−ωt)}, (2.4)

are considered, where ω is the angular frequency, β is the spanwise wavenumber, and t is the time. Here ϕ is the complex-
valued vector of disturbance amplitudes that consists of the streamwise, normal and spanwise velocities, the pressure, and
the temperature; and these amplitudes depend only on x and y. We also assume that the surface curvature is small, and the
normal velocity of the main flow is negligible. In addition, we apply the local-parallel approximation, i.e. the main-flow
components depend on x, but their derivatives on x are regarded as negligible.

Based on (2.3) but under the above-mentioned assumptions, one can derive [27] the equations governing the
propagation of disturbance amplitudes of the form (2.4). In the present paper, we use these equations, with the disturbance
amplitudes satisfying zero boundary conditions at y = 0 and y = ∞.

Optimal disturbances are computed along the boundary-layer slices, assuming that the disturbances are of the
form (2.4). The downstream propagation of the optimal disturbances is governed by the same equations [27] as for the
modal stability analysis.

3. NON-MODAL ANALYSIS

The governing equations, which are discussed in Section 2, are approximated in the normal direction y by a collocation
method. Then, the disturbance amplitudes become vector functions depending only on x; and we keep the same notation
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for the disturbance amplitudes both before and after the spatial approximation. After the approximation, the disturbance
amplitudes satisfy the system of ordinary differential equations [27]

A
d2ϕ

dx2 + B
dϕ
dx
+ (iωC − D)ϕ = 0. (3.1)

Here A, B, C and D are square x-dependent matrices of order 5ny, where ny is the number of the interior grid nodes in
the normal direction. It is worth noting that A is a diagonal matrix whose last ny diagonal entries are zero, and C is a
nearly-diagonal matrix. Let us introduce four additional variables that represent the derivatives with respect to x of the
disturbance velocity components and temperature. Then, equation (3.1) might be rewritten as the system of first-order
ordinary differential equations

M(x)
dq
dx
= q, (3.2)

where M(x) is an x-dependent matrix of order 9ny, and q = q(x) is a 9ny-component vector function.
Optimal disturbances largely depend on a functional, which is used for the optimization [36]. In the studies [17,19,33]

of optimal disturbances of compressible boundary layers, the functional

ℰ =

+∞∫︁
0

ρ̄
(︀
|u|2 + |v|2 + |w|2

)︀
+

T̄
γM2
∞ρ̄
|ρ|2 +

ρ̄

γ(γ − 1)M2
∞T̄
|T |2 dy (3.3)

of total disturbance energy density is used, where u is the streamwise velocity amplitude, v is the normal velocity amplitude,
w is the spanwise velocity amplitude, ρ is the density amplitude, and T is the temperature amplitude. Note that both
the main-flow density ρ̄ and the main-flow temperature T̄ depend both on y and x, in general. Within LOTRAN, the
disturbance pressure p appears in the governing equations instead of the disturbance density ρ. Using the relation

p = ρ̄T + T̄ρ (3.4)

that comes from the ideal gas law, the discrete analogue of (3.3) might be rewritten as q*Eq, where E = E(x) is an
x-dependent Hermitian matrix of rank 5ny.

3.1. Downstream integration

Each slice consists of a few main normals with the main flow data. We introduce additional uniform grids between
the main normals with the same number of interior grid nodes nx; and it is assumed that the main flow does not change
between the adjacent main normals. The streamwise coordinates of the main normal bases are denoted by x1 < x2 < . . . ,
the subgrid step by h j = (x j+1 − x j)/(nx + 1), and the subgrid nodes by x j,k = x j + (k − 1)h j.

Consider the streamwise initial-value problem for the system (3.2) with the initial node x j, the final node x j+1, and
the initial condition q(x j) = q j. At x j, we compute the system matrix M j = M(x j) and use it at each integration step. The
initial-value problem allows for non-physical solutions growing downstream at large rates and propagating upstream [17].
To exclude such solutions, we use standard numerical schemes combined with the spectral projection such as that for
viscous incompressible flows [24, 25]. We project the numerical solution onto an invariant subspace of M j corresponding
to the physically relevant subset Λ j of its spectrum.

The subset Λ j consists of all eigenvalues λ satisfying the inequality Real (1/λ) ≤ 0.8 |β|, where β is the spanwise
wavenumber [26]. This estimation is based on considering the asymptotic behavior of the branches of continuous spectrum
of the problem [17]. It can be shown analytically that for the part of continuous spectrum in the right half-plane
(corresponding to the upstream traveling disturbances) Imag(1/λ) ⩾ |β|. The coefficient 0.8 is introduced just to be on the
safe side to guarantee that no upstream traveling mode is present in Λ j. Note that in the cases under consideration linear
instability occurs only at quite large values of |β|. Meanwhile, as our tests showed, the leading discrete mode always has
Real (1/λ) ≤ 0.8 |β|. Outside of the linear instability region the inequality can be changed to Real (1/λ) ≤ 0. Numerical
experiments show that the physically relevant eigenvalues thus defined are well separated from the non-physical ones [24].

The spectral projectors at each j are computed using the Schur decomposition [37] of M j. The spectral projector thus
computed appears as P j = X jY j [23], where X j is a rectangular matrix whose columns form the orthonormal basis in the
invariant subspace of M j corresponding to the subset Λ j, and Y j is a rectangular matrix ensuring the following identities

X jY jM j = X jS jY j = M jX jY j, Y jX j = I

being valid, where S j = X*jM jX j is the restriction of M j to the invariant subspace.
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At the first integration step we use the implicit Euler method modified as follows

q̃ j,1 = Y jq j, S j
q̃ j,2 − q̃ j,1

h j
= q̃ j,2,

where q j is the solution at the j-th main normal. At other integration steps, we use the BDF-2 scheme modified as follows

S j
3q̃ j,k − 4q̃ j,k−1 + q̃ j,k−2

2h j
= q̃ j,k.

After the last step done, we put q j+1 = P j+1X jq̃ j,nx+2.
To compute the matrix of fundamental solutions Φ j between normals j and j + 1, we take the columns of the identity

matrix as the initial condition q̃ j,1. Then, the columns ofΦ j are the vectors q̃ j,nx+2, with the matrixΦ j satisfying the equality
q j+1 = P j+1X jΦ jY jq j for any initial condition q j. Thus, one can represent the numerical solution of the streamwise initial-
value problem between the jg-th and jo-th main normals as

q jo = P jo X jo−1Φ jo−1Y jo−1 . . .X jgΦ jg Y jg q jg = X jo F jg, jo Y jg q jg ,

where

F jg, jo = Y jo X jo−1Φ jo−1 . . .Y jg+1X jgΦ jg .

3.2. Computation of optimal disturbances

We say that the optimal disturbance is a disturbance being generated at x = x jg and achieving the maximum energy
amplification at x = x jo . In the sequel, x jg is called the generation point, and x jo is called the observation point. In
addition, we suppose that the optimal disturbance belongs to an invariant subspace of physically relevant eigenmodes of
a given dimension m. This invariant subspace is constructed in two steps. First, we select the subset Λ jg of the spectrum
of M jg , as described above. Next, among the eigenvalues of Λ jg , we select m ones having the largest values of Real (1/λ)
and use the obtained set instead of Λ jg , keeping the same notation. Since the rank of the matrix E(x) is equal to 5ny, then
m should not exceed 5ny. For numerical experiments, we choose m = 2ny, since for a fixed number of grid nodes ny, the
maximum disturbance energy amplification converges with further increase in m.

The optimal disturbance is computed by solving the problem that consist in maximizing the energy amplification of
disturbances from the subspace associated with Λ jg :

max
q jg=P jg q jg ̸=0

q*jo E jo q jo

q*jg E jg q jg
, (3.5)

where E j = E(x j).
By L j denote the lower triangular matrix that forms the factorization E j = L*jL j. Let L jX j = Q jR j be the QR-

decomposition [37] with the unitary rectangular matrix Q j and the upper triangular matrix R j. Let q̃ j = Y jq j and
µ j = R jq̃ j. Then

q*jo E jo q jo

q*jg E jg q jg
=
‖L jo q jo‖

2
2

‖L jg q jg‖
2
2
=
‖L jo X jo q̃ jo‖

2
2

‖L jg X jg q̃ jg‖
2
2
=
‖R jo F jg, jo R−1

jg µ jg‖
2
2

‖µ jg‖
2
2

.

Therefore, the solution of the problem (3.5) is reduced to computing the largest singular value of the matrix
R jo F jg, jo R−1

jg and the corresponding normalized right singular vector µopt
jg . The optimal disturbance in physical variables

is then computed by the formula qopt
jg = X jg R−1

jg µ
opt
jg , and its downstream propagation is governed by the formula

qopt
j = X jF jg, jY jg qopt

jg for j ⩾ jg. At the same time, the value

ℰ j(x jg , x jo ) = (qopt
j )*E jq

opt
j = ‖µ

opt
j ‖

2
2

is the total energy density of the optimal disturbance at a point x = x j. For the point x jo , the maximum N-factor among
disturbances generated at x jg is thus equal to

Nmax(x jg , x jo ) =
1
2

lnℰ j(x jg , x jo ).
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4. RESULTS

This section discusses results of the computation of optimal disturbances for two configurations illustrated in Fig. 2 in
the global Cartesian coordinates (X, Y, Z):

A) the windward surface of swept wing at an angle of attack of −5◦. The wing has the modified NACA 67 1-215
laminarized airfoil with a chord length (normal to the leading edge) of 0.7 m, and 45◦ sweep angle. The freestream
parameters are as follows: the velocity U∞ = 27 m/s, the density ρ∞ = 1.18 kg/m3, and the kinematic viscosity
ν∞ = 1.57 × 10−5 m2/s. Such parameter values correspond to the Reynolds number Re∞ = 1.72 × 106 and the Mach
number M∞ = 0.08. This configuration corresponds to experiments [38, 39] on the laminar-turbulent transition in
boundary layers over the swept wing SW-45 at various angles of attack. Data on the considered laminar boundary layer
are computed [26, 40, 41] by ANSYS Fluent in a digital analogue of the test section of the T-324 wind tunnel of ITAM
SB RAS.

B) prolate spheroid at an angle of attack of +10◦. The spheroid has a length of 2.4 m, and an aspect ratio of 6 : 1 : 1.
The freestream parameters are as follows: the velocity U∞ = 45 m/s, the density ρ∞ = 1.23 kg/m3, and the kinematic
viscosity ν∞ = 1.50 × 10−5 m2/s. Such parameter values correspond to the Reynolds number Re∞ = 7.20 × 106 and the
Mach number M∞ = 0.13. This configuration corresponds to experiments [42, 43] on the laminar-turbulent transition
in boundary layers over bodies of revolution. Data on the considered laminar boundary layer are computed [26] using
ANSYS Fluent.

The boundary layer stability is analyzed along the slices shown in Fig. 2. Profiles of the streamwise and spanwise
velocity components of the main flow near the surface along these slices are shown in the local orthogonal coordinates in
Fig. 3. The zero of the streamwise local coordinate x coincides with the beginning of the slice. The spanwise velocity is large
enough (up to 7% of the streamwise velocity) for the development of vortices of the crossflow instability [44]. In the present
paper, the stability of the boundary layers is studied at zero angular frequency and the values of the spanwise wavenumber
typical to the development of stationary crossflow vortices. In all numerical experiments, we fix the disturbance generation
point x jg = 0 as the beginning of the slice, with the observation point x jo > 0 being varied.

In the (x jo , β)-plane, Fig. 4 shows the level lines of the maximum N-factors, Nmax(0, x jo ), of the optimal disturbances
for both configurations, as well as the points at which a growth of stationary crossflow vortices is observed. It is seen that
for both configurations, the regions of modal and non-modal instability have a significant overlap. At the same time, at
relatively small values of β and sufficiently large values of x jo , only the non-modal instability is observed, although it is
characterized by relatively small maximum N-factors. This is further illustrated in Fig. 5, which shows the dependence
of the maximum N-factors on −β for a fixed x jo . It is seen that, in addition to the global maximum in the spanwise
wavenumber, the dependence has a local maximum associated with the optimal disturbance that has a small spanwise
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Fig. 2. The windward surface of the swept wing (top), the side surface of the prolate spheroid (bottom), and the slices along which the
boundary layer stability is studied. The slices are formed by external normals (black) to the flow-exposed surface (gray) along the line
of disturbance propagation, with the projection of that line onto the surface being shown in red.
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(red), x jo = 0.38 (green), x jo = 0.49 (blue) for the prolate spheroid (right) at β = −3000.

wavenumber and does not contain modes growing downstream. For the boundary layer over the swept wing, the obtained
result is in qualitative agreement with the experimental observation [34], while for that over the prolate spheroid this
effect is discovered for the first time. Note that this effect suggests the possibility of bypass transition for the considered
configurations.

Fig. 6 shows the dependence of the total energy density amplification of optimal disturbances on x computed for
various observation points. Fig. 7 shows the absolute values of the disturbance velocity components. It is seen that
at spanwise wavenumbers specific to the development of stationary crossflow vortices, the optimal disturbance weakly
depends on the observation point. In addition, as it is seen from Fig. 8, the shape of the developed optimal disturbance is
close to that of the leading local mode.
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5. CONCLUSION

Using an original numerical method, we compute for the first time the downstream propagation of optimal
disturbances for two three-dimensional aerodynamic configurations: a boundary layer over a finite-span swept wing, and a
boundary layer over a prolate spheroid. The basis of this method is the projection of the solution to an initial-value problem,
which governs the propagation of the disturbances, onto an invariant subspace of physically significant eigenmodes at each
step of numerical integration along the selected lines of disturbance propagation.

In this work, the stability of the boundary layers was studied at zero angular frequency. It is shown that there are two
maxima of the disturbance energy amplification in spanwise wavenumbers. One of them corresponds to the development
of stationary vortices of the crossflow instability, and the other one, at lower values of the spanwise wavenumber,
corresponds to the non-modal instability, previously observed in experiments on a swept wing.

Additionally, the presented examples show that the proposed method can serve as a basis for an engineering approach
to the non-modal spatial stability analysis of various boundary layers. In particular, the proposed method is prospective
for predicting the bypass laminar-turbulent transition within the framework of existing engineering approaches based on
the modal stability analysis by the eN-method.
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Abstract. In this work, a numerical method for modeling the downstream propagation of optimal
disturbances in compressible boundary layers over three-dimensional aerodynamic is proposed. At each
integration step, the method projects the numerical solution of governing equations onto an invariant
subspace of physically relevant eigenmodes, and the numerical integration is performed along the lines of
disturbance propagation. The propagation of optimal disturbances is studied in a wide range of parameters
for two configurations, viz a boundary layer over a swept wing of finite span and a boundary layer over a
prolate spheroid. The dependence of the disturbance energy amplification on the spanwise wavenumber is
found to have two local maximums. It is discussed how to combine the developed method with the modern
approaches, which are designed to predict the onset of laminar–turbulent transition using the eN-method.

Keywords: compressible boundary layers, spatial optimal disturbances, bypass transition, boundary layer
over a swept wing, boundary layer over a prolate spheroid, eN-method
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