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ВВЕДЕНИЕ

Вместе с вращением Земли и влиянием на нее внешних факторов мантийная конвекция является ведущей
составляющей термогравитационного механизма динамики геосфер, что подчеркивает ее значимость при рас-
смотрении вопросов строения и динамических свойств оболочек Земли. Самостоятельный интерес представля-
ет изучение динамики границ геосфер, в особенности в зоне непосредственного контактного взаимодействия
двух различных механизмов переноса тепла: конвективного в сравнительно маловязкой астеносфере и кондук-
тивного – в твердой литосфере.

В геодинамике принимается определение субдукции как “процесс погружения океанической литосферной
плиты/слэба в мантию под континент или островную дугу” [1], где основными движущими механизмами дина-
мики Земли выступают: заключенный в ней запас тепловой энергии [2], различие плотностей между холодной
субдуцирующей плитой и окружающей мантией. Согласно положениям тектоники литосферных плит слэбом
именуется выделяемый по данным сейсмотомографии фрагмент океанической литосферной плиты мощно-
стью 80–100 км, погружающийся (субдуцируемый) в мантию при субдукции [3]. Зона субдукции хорошо про-
слеживается на сейсмотомографических профилях вплоть до границы верхней и нижней мантии (670 км) [4].

Математический аппарат для построения современных моделей динамики мантии основан на положениях
механики сплошной среды, которые следуют квазигидродинамическим уравнениям в стоксовском приближе-
нии, уравнениям тепломассопереноса и, в большинстве случаев, принятием приближения Буссинеска (ОБ). За-
писи уравнений моделей разделяются способом представления погружающейся (субдуцированной) плиты как
самостоятельного геодинамического объекта, постановкой граничных условий и принятием начальных рас-
пределений переменных.

Известен ряд способов представлений слэба. Так, в [5, 6] образом слэба выступает тонкая упругая пластина
отрицательной плавучести. Такой подход допустим только для начальных слоев верхней мантии, где выполня-
ются положения Кирхгофа о сохранении нормалей к срединной поверхности деформируемой плиты и сохра-
нении ее толщины [7]. Тем не менее, результат сейсмического зондирования указывает на снижение толщины
плиты [4] и нарушении остальных положений Кирхгофа.

При моделировании под слэбом обычно принимается холодный поток особой квазижидкости, динамика
которой следует тем же уравнениям, что и модель мантийной конвекции [8–11]. Кроме того, не рассматрива-
ется этап его начального погружения в мантию.

Целью этой работы является изучение перестройки структуры мантийной конвекции, которая вызвана суб-
дукцией. В работе слэб представляет самостоятельный модельный объект, динамика которого определяется
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уравнениями Стокса. Учитываются потери слэбом его легких фракций и просочившихся сюда объемов мор-
ской воды. Расчет динамики мантийной конвекции и перестройка ее структуры выполнена в переменных
завихренность-функция тока, а расчет динамики слэба- на основании метода сглаженных частиц (SPH).

1. МОДЕЛЬ ВЕРХНЕМАНТИЙНОЙ КОНВЕКЦИИ

Мантийная конвекция сочетает конкуренцию между диффузией тепла (теплопроводностью), сопротивле-
нию движению (вязкостью) и выталкивающими силами (способностью к тепловому расширению) [12]. Мо-
дельным приближением верхней мантии выступает несжимаемая ньютоновская квазижидкость. Задача рас-
сматривается в двумерной постановке в декартовой системе координат. Вследствие высокой вязкости мантии
конвективные течения определяются уравнениями Стокса, безразмерная запись которых в терминах завихрен-
ность – функция тока принимает вид [13, 14]

∆µξ − 2
[︀
µxxψyy − 2µxyψxy + µyyψxx

]︀
− Raρx = 0, (1)

ψxx + ψyy − ξ = 0, (2)

Tt + (ψyT )x − (ψxT )y = ∆T, (3)

ρt + (ψyρ)x − (ψxρ)y = χρ∆ρ, (4)

где безразмерные переменные принимают такой смысл: x, y — оси декартовой системы координат (x = y = 0 ле-
вый угол), ось y направлена вниз; t — безразмерное время; ∆ = ∂2

∂x2 +
∂2

∂y2 — двумерный оператор Лапласа; µ (T, y),
ξ (x, y, t), ψ (x, y, t), ρ (x, y, t) — динамическая вязкость мантии, завихренность и функция тока мантийных тече-
ний, плотность мантии; U (x, y, t) ≡ ψy, V (x, y, t) ≡ −ψx, T (x, y, t) — латеральная и вертикальная скорости мантий-
ных течений, распределение температуры в мантии; Ra — численный параметр; χρ — коэффициент диффузии
плотности горных пород; нижние индексы переменных указывают на соответствующие одноименные частные
производные.

Если для представления ρx используется приближение Буссинеска, то

Ra = gρ̄βT (Tmax − Tmin)H2/µ̄Ū;

βT = 3.75 · 10−5 [1/℃] — коэффициент линейного расширения вещества верхней мантии. Обезразмеривание
уравнений выполнялось стандартным образом (штрихом отмечены безразмерные переменные):

(x, y) = H · (x, y)′, µ = µ̄ · µ′, T = (Tmax − Tmin)−1T ′, t = Hχ−1t′,

ρ = ρ̄ · ρ, χ = λ/ρ̄CP, Ū = H−1
χ, (U,V) = Ū · (U,V)′,

где µ̄ — масштабный множитель вязкости, а Ū – характерная скорость мантийных течений; H = 6.7 · 105 м –
глубина верхней мантии, xmax = 6.7 · 106 м – латеральная протяженность области вычислений; Tmin, Tmax – пре-
дельные значения мантийных температур; χ— температуропроводность мантии, λ – теплопроводность, а CP –
удельная изобарическая теплоемкость; g = 9.8 м2 · с−1 – ускорение свободного падения. Далее в уравнениях
модели штрихи опускаются. При этих значениях параметров Ra = 5.745 · 105.

Характерные значения параметров среды модели принимают значения:

H = 6.7 · 105 м, µ̄ = 1023 Па · с, χ = 2.88 · 10−7 м2 · с−1,

χρ = 2 · 10−8 м2/с, ρ̄ = 3.64 · 103 кг · м−3, Ū = 10−13 м · с−1.

Расчетная область представляет двумерную прямоугольную область декартовой системы координат. При-
нимается один и тот же характер граничных условий для температуры и плотности: отсутствие потоков тепла и
вещества мантии на боковых границах области; ненулевые потоки на горизонтальных границах

Tx (0, y, t) = Tx (xmax, y, t) = 0, Ty (x, 0, t) = qM , Ty (x, 1, t) = qC ,

ρx (0, y, t) = ρx (xmax, y, t) = 0, ρy (x, 0, t) = QM , ρy (x, 1, t) = QC ,
(5)

где qM, qC, QM, QC – потоки тепла и вещества на верхней и нижней границах мантии. Для скоростей заданы
условия прилипания на боковых границах

ψ (0, y, t) = ψ (xmax, y, t) = 0, ψn (0, y, t) = ψn (xmax, y, t) = 0, (6)
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где ψn — производная по нормали к границам области. На участке верхней мантии, где океаническая плита
движется к месту своего погружения и на всей нижней подошве мантии принимается условие проскальзывания

ψ (x, 0.t) = ψ (x, 1, t) = 0, ∂2
ψ (x ⊆ X, y = 0, t) /∂n2 = 0, (7)

где X – участок верхней границы до участка погружения субдукции слэба.
Для решения эллиптических уравнений (1) и (2) используется метод установления, сущность которого со-

стоит в применении псевдонестационарной трансформации уравнений в их параболические приближения [15].
Для чего вводится фиктивная временная производная, которая выполняет роль параметра контроля квазине-
стационарных итераций.

2. МОДЕЛЬ ДИНАМИКИ СЛЭБА

Анализ профилей сейсмотомографии [4] показывает существенное превышение протяженности слэба над
его толщиной, что допускает представления его модельного образа посредством гибкого тонкого стержня и
допустимость принятия независимости между латеральной и вертикальной скоростями субдукции. Принима-
ется также гидростатичность состояния слэба. Погружение слэба происходит при условии ρ* − ρ > 0 , когда
плотность слэба ρ* превышает плотность мантии. Тогда модель субдукции можно определить такими безраз-
мерными уравнениями: (︀

ηux
)︀

x − RaS yρ*x = 0, (8)(︀
ηvy

)︀
y + RaS g(ρ* − ρ) = 0, (9)

T *t + (uT *)x + (vT *)y = k · ∆T *, (10)

ρ
* = ρ*0

[︀
1 − βT (T *max − T *min) · T * − f (t, y)

]︀
, (11)

где η (T, y) – вязкость слэба (порядка 1021–1023 Н · с ·м−2 [16]); u (x, t), v (y, t), T * (x, y, t), ρ* (x, y, t) – его латеральная
и вертикальная скорости погружения, температура и плотность слэба; y – безразмерная вертикальная коорди-
ната; ū = 1.6 · 10−9 м · с−1 – характерная скорость субдукции; κ – коэффициент температуропроводности слэба;
RaS = gρ̄H2

η̄ū – плотностное число Рэлея для слэба; ρ*0 = 4.6 · 103 кг · м−3 – масштаб изменения плотности слэба;

для численного моделирования принимались следующие характерные значения параметров: η̄ = 1025 Па · с,
k = 4.608 · 10−3 м2 · с−1, RaS = 2.392 · 103; f (t, y) – безразмерная концентрация его легкого вещества, которая
вследствие всплытия легких составляющих вещества слэба характеризует прирост его плотности.

При записи (8)–(11) принимается приближение вещества слэба смесью тяжелой и легкой компонент, дина-
мика последних обусловлена следующим. Морская вода просачивается в океаническую литосферу через тре-
щины и поры, где вступает в реакцию с минералами в земной коре и мантии с образованием водных минералов
(таких как серпентин), которые накапливают воду в своих кристаллических структурах [17]. Объемы этой воды
и флюиды слэба входят в состав его легких компонент. Поэтому различные трансформации таких минералов (в
частности, формирование за счет выжимания воды их более плотных упаковок) можно интерпретировать как
частичный фазовый переход вещества слэба. В дальнейшем локализация этого процесса уже в самой мантии
приводит к аккумуляция таких флюидов, что в последующем может вызвать сейсмичность и плавление внутри
субдуцируемой плиты, а далее и в вышележащем мантийном клине.

Глубинное повышение давления и прирост температуры среды приводит к всплытию легких компонент сл-
эба и, как результату, росту концентрации его тяжелой составляющей и последующему росту плотности слэба.
Механизм этого процесса видится в следующем. На верхних слоях мантии, где вещество слэба перенасыще-
но объемами просочившейся сюда морской воды (и, соответственно, легких компонент слэба), происходит
массовое всплытие и формирование избыточных объемов высокотемпературных и насыщенных газами ком-
понент последующего магматического очага. До момента, когда плотность слэба оказывается близкой плотно-
сти мантии, его погружение снижается и может совсем прекратиться. Происходит так называемая стагнация,
максимальная зафиксированная глубина которой не превышает 700 км [4]. Области стагнации отчетливо про-
слеживаются также по гипоцентрам глубоких землетрясений. Далее по мере роста концентрации тяжелой ком-
поненты происходит прорыв зоны стагнации и последующее затем погружение отдельных его частей вплоть до
ядра земли [18].

Простая запись такого механизма здесь представлена в виде

f (t, y) = a f (t) · y · exp[−b f (t) · y], (12)

где a f (t) , b f (t) — некоторые неотрицательные функции. Максимальное значение этой функции

maxy f (t, y) = y f (t) · exp(−1)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



МОДЕЛИРОВАНИЕ ВЕРХНЕМАНТИЙНОЙ КОНВЕКЦИИ В ЗОНЕ СУБДУКЦИИ 91

достигается при y f (t) = a f (t) /b f (t), которое здесь допускает интерпретацию как глубины наибольшего оттока
легких компонент слэба.

Для решения уравнений (8)–(10) требуется вычисление частных производных в достаточно тонкой криво-
линейной области (ее ширина 80–100 км) размещения слэба, что обусловливает применение адекватных бес-
сеточных методов. В этой ситуации уместным видится применение бессеточного лагранжевого метода сгла-
женных частиц (SPH) [19]. Сущность метода состоит в интегральной интерполяции функций, которые пред-
ставлены конечным множеством дискретных частиц. В рамках SPH интерполяционные соотношения для
вычисления некоторой функции Φ (r), ее градиента и лапласиана для p-й частицы с текущей координатой
rp определяются выражениями

Φ
(︀
rp
)︀
=

Q(p)∑︁
q

mq

ρq
ΦqW(|rp − rq|, h), (13)

∇Φ
(︀
rp
)︀
=

Q(p)∑︁
p

mq

ρq
Φq∇W(|rp − rq|, h), (14)

∆Φ
(︀
rp
)︀
=

Q(p)∑︁
q

mq

ρq

(︀
Φp − Φq

)︀ [︂ 1
xpq

dWpq

dxq
+

1
ypq

dWpq

dq

]︂
, (15)

где p, q – порядковые номера частиц, p, q = 1 ÷ N (t); N (t) – текущее суммарное количество частиц метода;
Q(p) – совокупность частиц, которые оказываются соседними к p-й частице (методические вопросы постро-
ения этого набора рассмотрены в [20]); xpq = xp − xq, ypq = yp − yq и Wpq = W

(︀
rp − rq |, h

)︀
– функция ядра, на

основании которой аналитически рассчитываются производные в квадратных скобках; h – радиус сглажива-
ния. Представление лапласиана ∆Φ

(︀
rp
)︀

следует работе [21].
Для момента t + 1 координаты частиц определяются выражениями

xp(t + 1) = xp(t) + dt · up(t) и yp(t + 1) = yp(t) + dt · vp(t), (16)

где dt – временной шаг модели; up (t), vp (t) – латеральная и вертикальная скорости частиц, которые при задан-
ных начальных и граничных условиях определяются методом SPH из уравнений (10) и (11).

3. ЧИСЛЕННЫЙ АЛГОРИТМ

Вычислительная схема строилась на неравномерной по x и равномерной по y расчетных сетках

ωx = {xi = xi−1 + (hx)i, i = 1 ÷ Nx, x0 = 0, xNx = Xmax/H},

ωy = {y j = y j−1 + hy, j = 1 ÷ Ny, y0 = 0, yNy = 1},

где (hx)i, hy – длины соответствующих шагов сетки (hy = const) сетки; Nx, Ny – число узлов вдоль каждого направ-
ления; вдоль направления x сетка сгущается в области ее центральной части; в расчетах принимается постоян-
ный шаг ∆t по времени. Параметры вычислительного процесса определяются значениями: при таких числен-
ных значениях параметров вычислений: Nx = 100, Ny = 50, ∆t = 10−4, ∆τ = 10−6, ∆x = 9.67 · 10−2, ∆y = 5.76 · 10−2.

Здесь является параметром итераций решения уравнений (1), (2), (8) и (9) методом установления. Времен-
ной промежуток H/ū составляет 9.1324 · 107 лет (ū — характерный масштаб скорости погружения слэба). Число
временных слоев Nt = 2000 и временной шаг ∆t = 4.132 · 104 лет.

Сеточные операторы Lx, Lxx, Lxy, Ly, Lyy определяются выражениями

(Lx f )i, j =
fi+1, j − fi−1, j

(hx)i+1 − (hx)i
, (Lxx f )i, j =

1
h̄i

[︂
fi+1, j − fi, j

(hx)i+1
−

fi, j − fi−1, j

(hx)i

]︂
,

(Lxy f )i, j =
1

2hy

fi−1, j−1 − fi+1, j−1 − fi−1, j+1 + fi+1, j+1

(hx)i + (hx)i+1
,

(Ly f )i, j =
fi, j+1 − fi, j−1

2hy
, (Lyy f )i, j =

fi, j−1 − 2 fi, j + fi, j+1

h2
y

,

где i = 2 ÷ Nx − 1, j = 1 ÷ Ny и h̄i =
[︀
(hx)i + (hx)i+1

]︀
/2; i = 1 и i = Nx, отвечают определению граничных условий.
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Выражение для безразмерной вязкости верхней мантии и слэба здесь следует соотношению

µ = exp (−aT T + bYy) ,

где aT = −0.2 и bY = 1.33, см. [10].
Поскольку критерий устойчивости Куранта–Фридрихса–Леви (U/∆x2+V/∆y2)dt решения уравнений систе-

мы здесь существенно меньше 1, то для решения уравнений (1)–(2) и (8)–(9) используются явные разностные
схемы.

Разностная схема для уравнений мантийной конвекции принимает вид

ξ
s+1,n
i j = ξ

s,n
i j + ∆τ

[︀
(Lxx + Lyy)(µξs,n)i j − 2Rs,n

i j − RaLx(ρs,n)i j
]︀
, (1)′

Rs,n
i j = (LxxµLyyψ

s,n)i j − 2(LxyµLxyψ
s,n)i j + (LyyµLxxψ

s,n)i j,

ψ
s+1,n
i j = ψ

s,n
i j + ∆τ

[︀
− ξ

s,n
i j + (Lxx + Lyy)ψs,n

i j

]︀
, (2)′

T n+1
i j = T n

i j + ∆1t
[︀
− Lx(UT )n

i j − Ly(VT )n
i j + (Lxx + Lyy)T n

i j

]︀
, (3)′

ρ
n+1
i j = ρ

n
i j + ∆1t

[︀
− Lx(Uρ)n

i j − Ly(Vρ)n
i j + χρ(Lxx + Lyy)ρn

i j

]︀
, (4)′

U s+1,n
i j = Lyψ

s,n
i j , V s+1,n

i j = −Lxψ
s,n
i j ,

где верхний индекс n указывает текущее время tn расчета; индекс s является параметром итерационного поиска
решений уравнений методом установления; введение в расчеты временного шага ∆1t = 10−4∆t вызвано пробле-
мой синхронизации мантийной конвекции и субдукции (различием масштабов времени мантийной конвекции
H/Ū и субдукции H/ū).

Граничные и начальные условия (5)–(7) записываются подобным образом.
В качестве функции ядра для расчета динамики субдукции использовался сплайн 3-й степени [19]

W
(︀
|r − rq |, h

)︀
=

⎧⎨⎩
15
πh6 (h − |r − rq|)3, 0 < |r − rq| < h;

0, |r − rq| > h.

Вычислительные схемы строились на основании выражений (13)–(15)

us+1,n
p = us,n

p + dτ

[︃Q(p)∑︁
q

mq

(ρ*q)s,n ηpq

(︂
up − uq

xpq

dWpq

dxq

)︂s,n

− Ra(D)
S yq(ρ*q)s,n

x

]︃
,

vs+1,n
p = vs,n

p + dτ

[︃Q(p)∑︁
q

mq

(ρ*q)s,n ηpq

(︂
up − uq

ypq

dWpq

dyq

)︂s,n

− Ra(D)
S ((ρ*q)s,n

− ρi j)

]︃
,

T s+1,n
p = T s,n

p + dt

{︃Q(p)∑︁
q

mq

(ρ*q)s,n λpq

[︂(︀
Tp − Tq

)︀(︂ 1
xba

dWba

dxa
+

1
yba

dWba

dya

)︂]︂s,n
}︃
,

(︀
ρ
*
p

)︀s+1,n
= ρ*0

{︃
1 − βT

(︀
T *max − T *min

)︀ Q(p)∑︁
q

[︃
mq

ρ*q
T *q W(rp − rq|, h)

]︃s,n

− f
(︀
t, yq

)︀}︃
,

где s — параметр итерационного поиска решений уравнений методом установления; ηpq = ηp+ηq и λpq = λp+λq,
λp — температуропроводность слэба; параметры функции f

(︀
t, yq

)︀
из (12) определяются значениями: b f = y−1

2 и
a f = 0.2 exp(1) · b f ; Q(p) — совокупность частиц, которые оказываются соседними к частице с номером p.

Алгоритм расчета Q(p) выполняется следующим образом. На каждой итерации поиска решения уравнений
частицы размещаются в ячейки вычислительной схемы и далее, если частица с номером p попала в (i, j) ячейку,
для нее вычисляется среднее расстояния между ее координатами и координатами частиц из ячеек (i, j), (i ± 1,
j± 1). К соседним частицам причисляются те из них, которые оказываются на расстоянии от рассматриваемой
меньше этого среднего.

Вычислительный алгоритм состоит в следующем. Сначала в области вычислений устанавливается режим
мантийной конвекции, для чего при заданных начальных и граничных условиях (5) на регулярной сетке на-
ходятся решения уравнений (1)–(4). Функция тока на границе мантия-слэб равна нулю, а значение завихрен-
ности на границах следует (6). Решение (8)–(11) выполняется по такой схеме. Для участка поступления слэба
в мантию (ячейка (xA, 1) вычислительной схемы) формируется выборка частиц с фиксированным набором ха-
рактеристик (скорость, температура, плотность). Чтобы избежать скопления частиц на этом участке, следую-
щее формирование такой выборки происходит в момент, когда этот участок свободен от частиц предыдущей
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выборки. Далее динамика частиц следует уравнениям (8)–(16). Воздействие мантийных течений на динами-
ку субдукции здесь учитывается следующим образом. В пограничных для слэба ячейках среды размещаются
выборки частиц с одним и тем же набором среднего для ячейки значением динамических переменных. Коор-
динаты частиц определяются случайным образом.

4. ВЫЧИСЛИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ

При решении задач моделирования геодинамики встает проблема формирования начальных распределений
переменных моделей, которая вызвана трудностями проведения натурных наблюдений. Проведение многооб-
разных численных экспериментов с перебором вариантов значений переменных во многих случаев не дают
полной картины рассматриваемых явлений. Да и указание точных значений переменных мало что дают. Бо-
лее того, выборка начальных распределений уже сама изначально должна быть гетерогенной. Здесь численные
значения атрибутов частиц определяются случайным образом на основании соответствующих диапазонов пе-
ременных модели (8)–(11): скорость 5 ÷ 8 см/год; температура (1000 ÷ 1500) ℃; плотность (3500 ÷ 3600) кг/м3;
концентрация тяжелой компоненты рассчитывалась по формуле (11) подстановкой в ее левую часть значения
плотности. Эти диапазоны были сформированы на основании литературных источников [1, 16, 24–27].

Для проведения вычислительных экспериментов такие начальные распределения для температуры и плот-
ности определялись соотношениям

T (x, y, 1) =
T (L)(x, y)

Tmax − Tmin
+ ξ · 10−2 sin(πy) cos(πx),

ρ(x, y, 1) =
ρ(L)(x, y)

ρ̄
+ ξ · 10−2 sin(πy) cos(πx),

где T (L) (x, y) и ρ(L) (x, y) формировались на базе литературных источников [22, 23]; ξ — равномерно распреде-
ленная на интервале (0, 1) случайная величина, полученная датчиком случайных чисел.

Результаты моделирования мантийной конвекции в зоне субдукции после 1000 и 1500 временных шагов
представлены на фиг. 1, где крупные точки характеризуют координаты участков слэба (для наглядности здесь и
далее масштаб функции тока увеличен в 104 раз). Для понимания особенностей распределений они представ-
лены в непосредственной окрестности слэба.

Анализ показывает плавный характер течений, интенсивность которых растет с течением времени: скорость
в центре конвективной ячейки для случая фиг. 1б почти в два раза выше случая фиг. 1а. Согласно условиям зада-
чи, на границе области выполняется условие прилипания и равенство нулю функции тока. Поскольку граница
между мантией и слэбом является непротекаемой, то на ней функция тока также обращается в нуль, что и при-
водит к плавному обтеканию профилей слэба.

Дальнейшее сопоставление случаев показывает уплотнение распределений значений функции тока и фраг-
ментацию слэба, которая вызвана неравномерным распределением плотности вдоль его длины (она возрастает
вследствие всплытия легкой компоненты и утяжелением с ростом глубины) и воздействием на слэб мантийных
течений.

Погружение плиты в мантию (субдукция) вызывает разбиение исходной конвективной ячейки на ее две
составляющие. В этой ситуации слэб реально выступает вертикальной “перегородкой”.

ЗАКЛЮЧЕНИЕ

В работе рассматривается комплексная модель, составляющими которой выступает модель мантийной
конвекции (уравнения завихренности, функции тока и уравнения тепломассопереноса) и пространственно-
временная модель динамики слэба (уравнения скоростей, уравнения тепломассопереноса, для решения по-
ставленной задачи выполнена адаптация метода SPH). Предлагается модель отделения из состава слэба его
легких компонент, что приводит к росту плотности слэба и допускает интерпретацию как частичного фазового
перехода его вещества.

Воздействие мантийных течений на динамику субдукции здесь учитывается дополнением модельного об-
раза слэба наборами неразличимыми между собой частиц из примыкающих с ним в текущий момент ячеек
мантии.

Воздействие на слэб мантийных течений и неравномерность распределения вдоль него плотности обуслов-
ливает его частичную фрагментацию
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Фиг. 1. Распределения функции тока при t1000 (а), (в) и t1500 (б), (г).
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Abstract. A model of upper mantle convection in the subduction zone of a cold lithospheric plate
(subduction) into the Earth’s upper strata is developed. The issues of constructing the initial distributions
of model variables are discussed. Computational schemes for solving the model equations are given.
Calculation of dynamics of mantle convection and reorganization of its structure are performed in the
vorticity-current function variables, and dynamics of the plate subduction is calculated on the basis of the
smoothed-particle hydrodynamics method (SPH). A series of computational experiments are performed.

Keywords: mantle convection, Stokes equations, heat and mass transfer, fictitious domain method,
smoothed-particle hydrodynamics (SPH)
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