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Abstract. The paper investigates an interesting phenomenon found during earthquakes 
occurring in one area of the southern part of Azerbaijan.Taking into account the rare features of 
this part of the Earth's crust, the occurring event was modeled in the form of a mathematical 
problem of the dynamic theory of elasticity, which revealed the cause of the investigated 
phenomenon. Bibl.3. Fig.3. 
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1. INTRODUCTION

In earthquakes, as usual, there are 2 shocks following each other. The first of them 
corresponds to a type of longitudinal waves appearing as oscillatory motions with increasing 
amplitude in a plane parallel to the earth's surface. It is followed by a second, single-moment 
shock, apparently corresponding to Rayleigh surface waves, in which the motion is directed 
upward, i.e., perpendicular to the ground surface.  

We have found out that at earthquakes in Lankaran city of Azerbaijan Republic the first 
type of waves in the form of oscillatory motions is almost not observed even at earthquakes with 
high magnitudes, one of which - five-point earthquake - has happened recently in this area 

Trying to find the reason, we turned to the fact of the peculiarity of the earth crust 
structure in this area. And it differs by the fact that there are a lot of wells here, and the level of 
underground groundwater is quite close to the surface. This level varies from 3 to 5 meters from 
the ground surface.   

Taking into account these features and the fact that Lankaran is located between the 
Caspian Sea and the Talysh Mountains, and, usually, the epicenters of tremors are located on the 
sea bottom, the problem of unsteady dynamics of an elastic semi-infinite layer, the bottom part 
of which borders with a compressible ideal fluid, was posed (Fig. 1). The fluid motion is 
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assumed to be potential, i.e., vortexless. Some or all part of the end face of the layer is subjected 
to the shock.  

To solve this problem, we used some results of [1], devoted to the study of the dynamics 
of rectangular prisms from the position of the exact three-dimensional theory of elastodynamics. 
In particular, when some simplified boundary conditions are satisfied, the three-dimensional 
problem under study becomes two-dimensional, i.e., a solution for a layer is obtained. Here we 
will use exactly these ready solutions for a semi-infinite elastic layer subjected to the action of a 
longitudinal impact on the end region of the same layer. But in the present problem, the 
existence of different types of media bordering each other, of course, makes the solution process 
much more complicated; we obtain a problem with five unknowns. 

We propose a new method for determining the originals from transform functions, which 
in the present paper have a very complicated form; they are represented through determinants of 
the fifth rank. In some sense, this method is a generalization of a similar method which, for the 
same purpose, was first proposed in [1], and for axisymmetric cases in [2].  

Exact solutions are obtained, which are valid in the initial short time of the process, but 
give a rather wide possibility of seeing the whole process for subsequent times as well. The 
results with high accuracy confirm the correctness of determining the reasons for the absence of 
the first type of shocks on the crustal surface during earthquakes.  

2. STATEMENT AND METHOD OF SOLUTION 
Taking into account the location of Lankaran city of the Republic of Azerbaijan, the 

problem under consideration is modeled as follows. 
 

 
Fig.1 

 
An elastic semi-infinite layer, thickness 2a, is located on the surface of an ideal 

compressible liquid region of infinite depth.   (see Fig. 1). At the boundary of the liquid region 
z=0, the existence of an impermeable wall is assumed. It is assumed that the impact is applied on 
the end region of the layer, and the fluid motion is considered to be potential. Under these 
conditions, the problem can be formulated as the following initial boundary value problem for a 
given structure consisting of two different media. 

 
 𝜌𝜌 𝜕𝜕𝐔𝐔

𝜕𝜕𝑡𝑡2
= (𝜆𝜆 + 𝜇𝜇) grad div𝐔𝐔 + 𝜇𝜇𝜇𝜇𝐔𝐔, ,   𝐔𝐔 = 𝐔𝐔(𝑢𝑢, 𝑤𝑤) (1) 

 
𝑢𝑢 = 𝑤𝑤 = 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,               at𝑡𝑡 = 0,    (2) 

 𝜎𝜎𝑧𝑧𝑧𝑧 = 𝜎𝜎0𝑓𝑓(𝑡𝑡),𝑢𝑢 = 0   at    𝑧𝑧 = 0 (3) 

x 

2a 

z 
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 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥 = 0          at .𝑥𝑥 = 0 

In the following we will assume that 𝑓𝑓(𝑡𝑡) = 𝐻𝐻(𝑡𝑡),   where𝐻𝐻(𝑡𝑡)  is the Heaviside function 

The following conditions take place at the boundary between the liquid region and the layer:    

         𝜎𝜎𝑥𝑥𝑥𝑥 = −𝜌𝜌ж
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

         at ,        𝑥𝑥 = −2𝑎𝑎                              
   𝜎𝜎𝑥𝑥𝑥𝑥 = 0            at        𝑥𝑥 = −2𝑎𝑎 , (4 

𝑢̇𝑢 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=    0         при             𝑧𝑧 = 0     (5) 

and the equation describing the motion of the liquid region is as follows: 

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜑𝜑
𝜕𝜕𝑧𝑧2

= 1
𝑎𝑎ж2

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

 . 

Here𝐔𝐔 = 𝐔𝐔(𝑢𝑢,𝑤𝑤) is the displacement vector of the elastic layer, λ andµ are Lamé 
coefficients,𝑎𝑎ж is the speed of propagation of sound waves in a liquid medium whose motion is 
described by a potential function - 𝜑𝜑, 𝜌𝜌 ,𝜌𝜌ж  are the densities of the layer and the liquid, 
respectively,𝑡𝑡 is time. 

To solve this system, we will apply a similar method that was developed and used in [1]. 
Thanks to this method, the system of Lame equations is reduced to the simplest system of 
inhomogeneous Helmholtz equations, in the right-hand side of which there are boundary impact 
functions. This method involves the application of twofold integral transformations, along with 
the method of substitution of the sought functions, which leads to the above-mentioned excellent 
result. But this fact does not yet relieve us of the difficulty involved in going from the 
transformations to the originals. And to overcome these difficulties, the most universal method 
for finding analogous originals of twofold integral transformations  is proposed there.  

So, using the ready equations of this work for two-dimensional motion, after simple 
calculations with respect to the equation of motion of the fluid part of this structure, we can 
obtain the following algebraic system of linear equations to determine the five unknown 
constants appearing in the composition of the new potential functions:  

 

⎩
⎪
⎨

⎪
⎧
𝐶𝐶01
𝐶𝐶02
𝐴𝐴01
𝐴𝐴02
𝑔𝑔0 ⎭

⎪
⎬

⎪
⎫

{𝐷𝐷} =

⎩
⎪
⎨

⎪
⎧ 0
Ω𝑞𝑞2

0
Ω𝑞𝑞2

0 ⎭
⎪
⎬

⎪
⎫

  ,       whereΩ = − 𝑓𝑓(𝑝𝑝)𝜎𝜎0
(𝜆𝜆+2𝜇𝜇)𝜈𝜈12𝑞𝑞

 . (6) 

Here {𝐷𝐷} = {𝑎𝑎𝑖𝑖𝑖𝑖}𝑒𝑒2𝑎𝑎𝜈𝜈1𝑒𝑒2𝑎𝑎𝜈𝜈2,       {𝐷𝐷} is a rank 5 matrix  

 

𝑎𝑎11 = 2𝑞𝑞𝜈𝜈1 , 

𝑎𝑎21 =  �1 + 2𝜇𝜇
𝜆𝜆
� 𝜈𝜈12 − 𝑞𝑞2 , 

𝑎𝑎31 = 2𝑞𝑞𝜈𝜈1𝑒𝑒−2𝑎𝑎𝜈𝜈1 , 
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𝑎𝑎41 =  ��1 + 2𝜇𝜇
𝜆𝜆
� 𝜈𝜈12 − 𝑞𝑞2� 𝑒𝑒−2𝑎𝑎𝜈𝜈1 , 

𝑎𝑎51 = 𝑝𝑝𝜈𝜈1𝑒𝑒−2𝑎𝑎𝜈𝜈1 , 

    

𝑎𝑎12 =  −2𝑞𝑞𝑣𝑣1𝑒𝑒−2𝑎𝑎𝜈𝜈1 , 

 𝑎𝑎22 =  ��1 + 2𝜇𝜇
𝜆𝜆
� 𝜈𝜈12 − 𝑞𝑞2� 𝑒𝑒−2𝑎𝑎𝜈𝜈1 , 

𝑎𝑎32 =  −2𝑞𝑞𝜈𝜈1 , 

𝑎𝑎42 =  ��1 + 2𝜇𝜇
𝜆𝜆
� 𝜈𝜈12 − 𝑞𝑞2� , 

𝑎𝑎52 = 𝑝𝑝𝜈𝜈1 , 

  (*) 

𝑎𝑎13 =  −(𝑞𝑞2 + 𝜈𝜈22)𝜈𝜈2, 

𝑎𝑎23 =  2𝜇𝜇
𝜆𝜆
𝑞𝑞𝜈𝜈22 , 

𝑎𝑎33 =  (𝑞𝑞2 + 𝜈𝜈22)𝜈𝜈2 × 𝑒𝑒−2𝑎𝑎𝜈𝜈2 , 

𝑎𝑎43 =  2𝜇𝜇
𝜆𝜆
𝑞𝑞𝜈𝜈22𝑒𝑒−2𝑎𝑎𝜈𝜈2 , 

𝑎𝑎53 = 𝑝𝑝𝑝𝑝𝜈𝜈2𝑒𝑒−2𝑎𝑎𝜈𝜈2 , 

 

𝑎𝑎14 = (𝑞𝑞2 + 𝜈𝜈22)𝜈𝜈2𝑒𝑒−2𝑎𝑎𝜈𝜈2 , 

𝑎𝑎24 = − 2𝜇𝜇
𝜆𝜆
𝑞𝑞𝜈𝜈22𝑒𝑒−2𝑎𝑎𝜈𝜈2 , 

𝑎𝑎34 = (𝑞𝑞2 + 𝜈𝜈22)𝜈𝜈2 , 

𝑎𝑎44 = − 2𝜇𝜇
𝜆𝜆
𝑞𝑞𝜈𝜈22 , 

𝑎𝑎54 = 𝑝𝑝𝑝𝑝𝜈𝜈2 , 

 

 

𝑎𝑎15 = 0 , 

𝑎𝑎25 = 0 , 

𝑎𝑎35 = 0 ,              

𝑎𝑎45 =  −𝜌𝜌ж
𝑝𝑝
𝜆𝜆
𝑒𝑒−2𝑎𝑎𝜈𝜈ж , 

𝑎𝑎55 =  𝜈𝜈ж𝑒𝑒−2𝑎𝑎𝜈𝜈ж . 

The following notations are adopted here :  
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  𝜈𝜈𝑘𝑘 = ��𝑝𝑝
2

𝑐𝑐𝑘𝑘
2 + 𝑞𝑞2� ,    𝑘𝑘 = 1,2   and𝜈𝜈ж = ��𝑝𝑝

2

𝑐𝑐ж2
+ 𝑞𝑞2� ,𝑐𝑐1 = �𝜆𝜆+2𝜇𝜇

𝜌𝜌
 , 𝑐𝑐2 = �

𝜇𝜇
𝜌𝜌
   are the 

propagation velocities of longitudinal and transverse waves in the layer material. 
 
Let's modify  {𝐷𝐷} as follows: 
 
                                                     {𝐷𝐷} =𝑒𝑒−2𝑎𝑎𝜈𝜈ж{𝐷𝐷0}. 
 
Then only the minus degrees of𝑒𝑒−2𝑎𝑎𝜈𝜈𝑘𝑘  will appear in the new matrix{𝐷𝐷0} (𝑘𝑘 = 1,2) 
 
          The transformation of the longitudinal velocity at the free surface of the layer at𝑥𝑥 = 0 , 
according to [1], and at the selected coordinate system (Fig. 1) is expressed by the following 
formula: 

 𝑤𝑤�̇ = − 𝜎𝜎0
(𝜆𝜆+2𝜇𝜇)𝜈𝜈12

 +   𝐶𝐶01𝑞𝑞 + 𝐶𝐶02𝑞𝑞 − 𝜈𝜈2 
2𝐴𝐴01 − 𝜈𝜈22𝐴𝐴02 (7) 

 Thus, in the variable parameters of transformations the solution is completely defined. 
But it is expressed through rank 5 determinants, and, therefore, finding the originals by the usual 
methods is almost impossible. In such cases, it is appropriate to apply the method based in [1].   
The principle on which this method is based becomes more relevant when we deal with very 
complex function-transformations. 

First of all, according to the above-mentioned method, in order to determine the behavior 
of transformations at infinity, when𝑝𝑝 → ∞ , it is necessary to decompose them into convergent 
series on functions1/𝜈𝜈1𝑛𝑛 . Just in this case, each term of this series will turn out to be a function-
transformation for the originals by both Laplace and Fourier. 

Let us first take the basic determinant   {𝐷𝐷0}    and modify it as follows: we put 0 where 
the expression𝑒𝑒−2𝑎𝑎𝜈𝜈𝑘𝑘    ,   (𝑘𝑘 = 1,2) appears,   since all summands involving these terms 
generated by the expansion of this determinant approach zero faster in total than any degree of .   
𝜈𝜈1−𝑛𝑛 

In such a case, the expression for{𝐷𝐷0} is noticeably simplified - it has only eight terms   
left of the total sum. Of these 8 terms, let us keep the term which   has the greatest degree in 
infinity𝑝𝑝 → ∞   : 

|𝐷𝐷0| ≈ −Ω𝑞𝑞2𝑎𝑎21𝑎𝑎13𝑎𝑎34 ∙ (𝑎𝑎55𝑎𝑎42 − 𝑎𝑎45𝑎𝑎52). 

In  the same way we determine the principal terms of other determinants  
|𝐷𝐷𝑛𝑛|∙𝑒𝑒−2𝑎𝑎𝜈𝜈ж(𝑛𝑛 = 1,2,3,4) , formed from the system (6), according to Cramer's rule for 
determining constants  𝐶𝐶01, 𝐶𝐶02, 𝐴𝐴01, 𝐴𝐴02:    

 

|𝐷𝐷1| ≈ −Ω𝑞𝑞2 ⋅ 𝑎𝑎13 ⋅ 𝑎𝑎34(𝑎𝑎55 ⋅ 𝑎𝑎42 − 𝑎𝑎45 ⋅ 𝑎𝑎52) ∙ 𝑒𝑒2𝑎𝑎𝜈𝜈1 ∙ 𝑒𝑒2𝑎𝑎𝜈𝜈2, 

|𝐷𝐷2| ≈ −Ω𝑞𝑞2 ⋅ 𝑎𝑎13 ⋅ 𝑎𝑎34 ∙ 𝑎𝑎55∙𝑒𝑒2𝑎𝑎𝜈𝜈2, 

|𝐷𝐷3| ≈ −Ω𝑞𝑞2 ⋅ 𝑎𝑎11 ⋅ 𝑎𝑎34 ∙ (𝑎𝑎55 ⋅ 𝑎𝑎42 − 𝑎𝑎45 ⋅ 𝑎𝑎52) ∙ 𝑒𝑒2𝑎𝑎𝜈𝜈1 ∙ 𝑒𝑒2𝑎𝑎𝜈𝜈2, 

|𝐷𝐷4| ≈ −Ω𝑞𝑞2 ⋅ 𝑎𝑎21 ⋅ 𝑎𝑎13 ⋅ 𝑎𝑎32 ∙ 𝑎𝑎55∙𝑒𝑒2𝑎𝑎𝜈𝜈1. 
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For short time intervals during which the shock load is applied, the behavior of the 
ratios𝐷𝐷𝑘𝑘

𝐷𝐷0
  , k=1,2.3, 4 , at infinity, of course, will be determined mainly from the ratios of these 

same terms of the highest degree. Then we obtain 

 

С01 = 𝛺𝛺𝑞𝑞2

𝑎𝑎21
 ,     С02 = 𝛺𝛺𝑞𝑞2∙𝑎𝑎55∙𝑒𝑒−2𝑎𝑎𝜈𝜈1

(𝑎𝑎55⋅𝑎𝑎42−𝑎𝑎45⋅𝑎𝑎52)   , 

   (8) 
А01 = 𝛺𝛺𝑞𝑞2∙𝑎𝑎11

𝑎𝑎21∙𝑎𝑎13
,А02 = − 𝛺𝛺𝑞𝑞2∙𝑎𝑎32∙𝑎𝑎55∙𝑒𝑒−2𝑎𝑎𝜈𝜈2

𝑎𝑎34∙(𝑎𝑎55⋅𝑎𝑎42−𝑎𝑎45⋅𝑎𝑎52)   . 

 

          Putting the values of these constants in the formulas (7), we obtain the expression of the 
desired solution in the parameters of the transformations. Using the existing analytical method 
[3], it is easy to determine the twofold originals of these transformations 

          Let us separately determine the originals of the first, second and fourth terms in the sum of 
the right-hand side of (7): 

              1)− 𝜎𝜎0
(𝜆𝜆+2𝜇𝜇)⋅𝜈𝜈12

 ⇿ − 𝜎𝜎0∙с1
(𝜆𝜆+2𝜇𝜇)𝐻𝐻 �𝑡𝑡 −

𝑧𝑧
с1
� ;    (9) 

 2) 𝐶𝐶01𝑞𝑞= 𝛺𝛺𝑞𝑞
3

𝑎𝑎21
= − 𝜎𝜎0 𝑞𝑞2

(𝜆𝜆+2𝜇𝜇)𝜈𝜈12
1

�1+2𝜇𝜇𝜆𝜆 �𝜈𝜈1
2−𝑞𝑞2

= − 𝜎𝜎0∙с12

(𝜆𝜆+2𝜇𝜇) � 
𝐻𝐻�𝑡𝑡− 𝑧𝑧

√2с2
�

√2⋅с2
—

𝐻𝐻�𝑡𝑡− 𝑧𝑧
с1
�

с1
�  , (10) 

 3)  −𝜈𝜈2 
2𝐴𝐴01 = −𝜈𝜈22 ∙

Ω𝑞𝑞2∙𝑎𝑎11
𝑎𝑎21∙𝑎𝑎13

= 𝜎𝜎0∙𝜈𝜈22

(𝜆𝜆+2𝜇𝜇)∙𝜈𝜈12
 ∙ 2𝑞𝑞2𝜈𝜈1

[�1+2𝜇𝜇𝜆𝜆 �𝜈𝜈1
2−𝑞𝑞2]∙[�𝑞𝑞2+𝜈𝜈22�𝜈𝜈2]

⇿ 

                ⇿𝜎𝜎0∙(с12−2𝑐𝑐22)
(𝜆𝜆+2𝜇𝜇)

с1
с2

𝐻𝐻�𝑡𝑡− 𝑧𝑧
√2с2

�

√2⋅с2
 .    (11) 

Note that in the last formula an obvious approximation is used  

 𝜈𝜈2
𝜈𝜈1
≈ 𝑐𝑐1

𝑐𝑐2
   at    𝑝𝑝 → ∞   .  

As can be seen from these formulas, their sum is identically zero for the ratioс1 = 2с2 , 
which is valid for the value of Poisson's ratio    𝜈𝜈 = 1

3
 , and that for most materials this value is 

exactly this value.  

This is an unusually interesting result, confirming the high accuracy of determining the 
cause of the investigated phenomenon, since the main tone in the formation of longitudinal 
motions on the surface of the layer is set by these components. The other two components in (7) 
represent diffraction waves coming from the low side contacting the liquid. They are 
insignificant, and are not able to change the wave pattern formed from the above constructed 
solutions. Nevertheless, below we give ready solutions and graphs of distributions for the 
following values of time, longitudinal velocities at the upper boundary of the layer, 
corresponding to each wave separately. 

First, let us consider the longitudinal diffraction waves reflected from the low side of the 
layer. From formulas (7), (8) and from the expressions of the components of the principal 
determinant(∗) one can easily determine the mathematical expression of this wave. It is as 
follows      
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 𝑤𝑤�̇прод. =  𝐶𝐶02𝑞𝑞 = Ω𝑞𝑞3∙𝑎𝑎55∙𝑒𝑒−2𝑎𝑎𝜈𝜈1

(𝑎𝑎55⋅𝑎𝑎42−𝑎𝑎45⋅𝑎𝑎52) = 𝜎𝜎0∙𝑐𝑐1
(𝜆𝜆+2𝜇𝜇)

с1∙(с12−2𝑐𝑐22)𝑞𝑞2𝑒𝑒−2𝑎𝑎𝜈𝜈1

𝜈𝜈12∙(𝑝𝑝2�1+
𝜌𝜌ж
𝜌𝜌 ∙

𝑎𝑎ж
𝑐𝑐1
�+2∙𝑐𝑐2∙2 𝑞𝑞2)

  .  (12) 

                       

Let𝜌𝜌ж
𝜌𝜌 
∙ 𝑎𝑎ж
𝑐𝑐1

= 𝛼𝛼, then the inverse Laplace transform of formula (12), can be represented in 

the following form: 

𝑤𝑤�̇прод 
𝜎𝜎0∙𝑐𝑐1

(𝜆𝜆+2𝜇𝜇)
 = 0.5

(1+𝛼𝛼) ∫ �∫ �𝐽𝐽0�𝑞𝑞(𝜏𝜏1 − 𝜏𝜏)�� �𝐽𝐽0�𝑞𝑞√𝜏𝜏2 − 4�� 𝑑𝑑𝑑𝑑𝜏𝜏1
2 � 𝑞𝑞 sin �0.5�2 1−𝛼𝛼

1+𝛼𝛼
𝑞𝑞(𝑡𝑡 − 𝜏𝜏1)�𝑑𝑑𝜏𝜏1

𝑡𝑡
2 .    

                                                

Let us only note that the Efros theorems, convolution theorems and tables given in [3] 
were used to obtain this formula. Now, having made the inverse Fourier-cosine transformation, 
we can give the plots of the longitudinal velocity on the upper surface of the layer. 

Calculated for𝜈𝜈 = 1
3
 and for the following values of time𝑡𝑡 = 𝑎𝑎

𝑐𝑐1
𝑛𝑛 , and for the 

dimensionless longitudinal velocity     𝑤𝑤�̇прод = 𝑤𝑤�̇прод 
𝜎𝜎0∙𝑐𝑐1

(𝜆𝜆+2𝜇𝜇)
 . 

The first diffraction wave will cross this surface at 𝑛𝑛 = 2, 

 
 

Fig. 2 

Now let's calculate the corresponding dimensionless component of the diffraction 
transverse wave that will cross the upper layer at the moment𝑛𝑛 = 4 . Then we  

𝑤𝑤�̇попер = −𝜈𝜈22𝐴𝐴02 = 𝜈𝜈22
𝛺𝛺𝑞𝑞2𝑎𝑎32𝑎𝑎55𝑒𝑒−2𝑎𝑎𝜈𝜈2

𝑎𝑎34(𝑎𝑎55𝑎𝑎42 − 𝑎𝑎45𝑎𝑎52) = 

=  
𝜎𝜎0𝑐𝑐1

(𝜆𝜆 + 2𝜇𝜇) 
(с12 − 2𝑐𝑐22)2𝑞𝑞2𝑒𝑒−2𝑎𝑎𝜈𝜈1

с2(𝑝𝑝2 + 2𝑐𝑐22)(𝑝𝑝2 �1 + 𝜌𝜌ж
𝜌𝜌 ∙

𝑎𝑎ж
𝑐𝑐1
� + 2𝑐𝑐22𝑞𝑞2)

  , 

𝑤𝑤�̇попер = − 1
2∙𝛼𝛼(1+𝛼𝛼) ∫ ��cos �𝑞𝑞

2
(𝜏𝜏 − 4)�� − �cos �𝑞𝑞

2
1

√1+𝛼𝛼
(𝜏𝜏 − 4)��� ∙ 𝐽𝐽0 �

𝑞𝑞
2
√𝑡𝑡2 − 𝜏𝜏2� 𝑑𝑑𝑑𝑑𝑡𝑡

4   , 
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Fig.3 

As can be seen from these graphs, their values are quite small; they are less than one 
hundredth of the value of each wave (9)-(11), which is formed at the upper boundary of the 
layer. Naturally, they cannot cause perceptible oscillations. One more interesting fact should be 
noted: in these components, the motion along the impact direction quickly changes its sign to the 
opposite one, as the graphs show. 

 

3. CONCLUSION 

The obtained result allows us to formulate the following interesting conclusion: the top 
layer of objects on the liquid surface almost does not experience longitudinal impact loading. 
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