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щее событие было смоделировано в виде математической задачи динамической теории упругости, которая
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1. ВВЕДЕНИЕ

При землетрясениях, как обычно, наблюдаются 2 толчка, следующие друг за другом. Первый из них со-
ответствует типу продольных волн, появляющихся в виде колебательных движений с возрастающей ампли-
тудой в плоскости, параллельной поверхности земли. За ним следует второй, одинарно-мгновенный толчок,
по-видимому, соответствующий поверхностным волнам Рэлея, в котором движение направлено вверх, т.е. пер-
пендикулярно поверхности земли.

Нами обнаружено, что при землетрясениях в городе Ленкорань Азербайджанской Республики первого типа
волн в виде колебательных движений почти не наблюдается, даже при землетрясениях с высокими магнитуда-
ми, одно из которых – пятибалльное – произошло совсем недавно в этой местности.

Пытаясь найти причину, мы обратились к факту особенности структуры земной коры этой местности. А от-
личается она тем, что здесь очень много колодцев, и уровень подземных грунтовых вод довольно близок к по-
верхности. Этот уровень колеблется от 3 до 5 метров от поверхности земли.

Учитывая эти особенности и то обстоятельство, что Ленкорань находится между Каспийским морем и Та-
лышскими горами, и, обычно, эпицентры толчков находятся на морском дне, была поставлена задача о неста-
ционарной динамике упругого полубесконечного слоя, нижняя часть которого граничит со сжимаемой иде-
альной жидкостью (фиг. 1). Движение жидкости считается потенциальным, т.е. безвихревым. Ударному воз-
действию подвергается некая или вся часть торца слоя.

Для решения этой задачи были использованы некоторые результаты работы [1], посвященной исследова-
нию динамики прямоугольных призм, с позиции точной трехмерной теории эластодинамики. В частност и, при
выполнении некоторых упрощенных краевых условий, исследуемая трехмерная задача становится двумерной,
т.е. получается решение для слоя. Здесь будем использовать именно эти готовые решения для полубесконечного
упругого слоя, подверженного действию продольного удара по торцевой области этого же слоя. Но в настоя-
щей задаче, существование граничащих между собой разных типов сред, конечно, намного усугубляет процесс
решения; получается задача с пятью неизвестными.

Предложен новый метод определения оригиналов от функций-преобразований, которые в настоящей ра-
боте имеют очень сложный вид; они представлены через детерминанты пятого ранга. В некотором смысле этот
метод является обобщением аналогичного метода, который, с этой же целью, впервые был предложен в [1], а
для осесимметричных случаев – в [2].

Получены точные решения, которые справедливы в начальном коротком времени процесса, но дают до-
вольно широкую возможность видения целого процесса и для последующих времен. Результаты с высокой точ-
ностью подтверждают верность определения причин отсутствия первого типа толчков на поверхности земной
коры при землетрясениях.
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2. ПОСТАНОВКА И МЕТОД РЕШЕНИЯ

Учитывая расположенность города Ленкорань Азербайджанской Республики, рассматриваемая задача мо-
делируется следующим образом.

Упругий полубесконечный слой, толщиной 2a, находится на поверхности идеальной сжимаемой жидкой
области бесконечной глубины. (см. фиг. 1). На границе жидкой области z = 0 принято существование непрони-
цаемой стенки. Предполагается, что удар наносится по торцевой области слоя, и движение жидкости считается
потенциальным. При этих условиях, поставленная задача может быть сформулирована следующей начально-
краевой задачей для данной конструкции, состоящей из двух разных сред.

ρ
∂U

∂t2 =
(︀
λ + µ

)︀
grad divU + µ∆U, U = U (u,w) , (1)

u = w = 0,
∂u
∂t
=
∂w
∂t
= 0,

при t = 0, (2)

σzz = σ0 f (t) , u = 0 при z = 0,
σxx = σxz = 0 при x = 0.

(3)

В дальнейшем будем считать, что f (t) = H (t) ,где H (t) — функция Хевисайда.
На границе жидкой области и слоя имеют место следующие условия:

σxx = −ρж
∂φ

∂t
при x = −2a,

σxz = 0 при x = −2a,

u̇ =
∂φ

∂x
,

(4)

∂φ

∂z
= 0 при z = 0 (5)

и уравнение, описывающее движение жидкой области, следующее:

∂2φ

∂x2 +
∂2φ

∂z2 =
1

a2
ж

∂2φ

∂t2 .

Здесь U = U (u,w) – вектор перемещения упругого слоя, λ и µ коэффициенты Ламе, aж – скорость распро-
странения звуковых волн в жидкой среде, движение которой описывается потенциальной функцией – φ, ρ,
ρж – соответственно, плотности слоя и жидкости, t – время.

Для решения этой системы будет применен аналогичный метод, который разработан и использован в [1].
Благодаря этому методу, система уравнений Ламе, сводится к простейшей системе неоднородных уравнений
Гельмгольца, в правой части которых присутствуют краевые функции ударных нагрузок. Этот метод преду-
сматривает применение двукратных интегральных преобразований, наряду с методом замены отыскиваемых
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функций, что приводит к вышеупомянутому прекрасному результату. Но этот факт еще не избавляет нас от той
сложности, которая связана с переходом от преобразований к оригиналам. И для преодоления этих трудно-
стей, там же предложен наиболее универсальный способ для нахождения аналогичных оригиналов двукратных
интегральных преобразований.

Итак, используя готовые уравнения этой работы для двумерного движения, после несложных выкладок в
отношении уравнения движения жидкой части этой конструкции можно получить следующую алгебраическую
систему линейных уравнений для определения пяти неизвестных постоянных, фигурирующих в составе новых
потенциальных функций: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C01
C02
A01
A02
g0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ {D} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0
Ωq2

0
Ωq2

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , где Ω = −
f (p) σ0(︀
λ + 2µ

)︀
ν2

1q
. (6)

Здесь {D} = {aik} e2aν1 e2aν2 , {D}— матрица 5-го ранга

a11 = 2qν1,

a21 =

(︂
1 +

2µ
λ

)︂
ν

2
1 − q2,

a31 = 2qν1e−2aν1 ,

a41 =

[︂(︂
1 +

2µ
λ

)︂
ν

2
1 − q2

]︂
e−2aν1 ,

a51 = pν1e−2aν1 ,

a12 = −2qv1e−2aν1 ,

a22 =

[︂(︂
1 +

2µ
λ

)︂
ν

2
1 − q2

]︂
e−2aν1 ,

a32 = −2qν1,

a42 =

(︂(︂
1 +

2µ
λ

)︂
ν

2
1 − q2

)︂
,

a52 = pν1,

a13 = −
(︀
q2 + ν2

2

)︀
ν2,

a23 =
2µ
λ

qν2
2,

a33 =
(︀
q2 + ν2

2

)︀
ν2 × e−2aν2 ,

a43 =
2µ
λ

qν2
2e−2aν2 ,

a53 = pqν2e−2aν2 ,

a14 =
(︀
q2 + ν2

2

)︀
ν2e−2aν2 ,

a24 = −
2µ
λ

qν2
2e−2aν2 ,

a34 =
(︀
q2 + ν2

2

)︀
ν2,

a44 = −
2µ
λ

qν2
2,

a54 = pqν2,

a15 = 0,
a25 = 0,
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a35 = 0,

a45 = −ρж
p
λ

e−2aνж ,

a55 = νжe−2aνж .

Здесь приняты следующие обозначения:

νk =

√︃(︂
p2

c2
k
+ q2

)︂
, k = 1, 2, и νж =

√︃(︂
p2

c2
ж
+ q2

)︂
, c1 =

√︃
λ + 2µ
ρ
, c2 =

√︂
µ

ρ

являются скоростями распространения продольных и поперечных волн в материале слоя.
Видоизменим {D} следующим образом:

{D} = e−2aνж {D0}.

Тогда в новой матрице {D0} будут фигурировать только минусовые степени e−2aνk (k = 1, 2).
Преобразование продольной скорости на свободной поверхности слоя при x = 0, согласно [1], и при вы-

бранной координатной системе (фиг.1) выражается следующей формулой:

̃̇︀W = − σ0(︀
λ + 2µ

)︀
ν2

1
+C01q +C02q − ν2

2A01 − ν
2
2A02. (7)

Таким образом, в переменных параметрах преобразований решение определено полностью. Но оно выра-
жено через детерминанты 5-го ранга, и, поэтому, нахождение оригиналов обычными способами почти невоз-
можно. В таких случаях уместно применить метод, основанный в [1]. Принцип, на котором базируется данный
метод, становится более актуальным, когда мы имеем дело с очень сложными функциями-преобразованиями.

Прежде всего, согласно вышеупомянутому методу, чтобы определить поведение преобразований в беско-
нечности, когда p→ ∞ , необходимо их разложить в сходящиеся ряды по функциям 1/νn

1. Именно в этом случае,
каждый член этого ряда окажется функцией-преобразованием для оригиналов и по Лапласу, и по Фурье.

Сначала возьмем основной детерминант{D0}и видоизменим его следующим образом: поставим 0 в тех ме-
стах, где фигурирует выражение e−2aνk (k = 1, 2) так как все слагаемые с участием этих членов, образующихся
при раскрытии этого детерминанта, в сумме быстрее приближаются к нулю, чем любая степень ν−n

1 .
В таком случае выражение для {D0} заметно упрощается – у него остается только восемь членов из общей

суммы. Из этих 8-и членов сохраним тот член, который в бесконечности p→ ∞ имеет наибольшую степень:

|D0| ≈ −Ωq2a21a13a34 · (a55a42 − a45a52).

Тем же способом определим главные члены и других детерминантов |Dn| · e−2aνж (n = 1, 2, 3, 4), образующихся
из системы (6), согласно правилу Крамера для определения постоянных C01,C02, A01, A02:

|D1| ≈ −Ωq2 · a13 · a34 · (a55a42 − a45a52) · e2aν1 · e2aν2 ,

|D2| ≈ −Ωq2 · a13 · a34 · a55 · e2aν2 ,

|D3| ≈ −Ωq2 · a11 · a34 · (a55a42 − a45a52) · e2aν1 · e2aν2 ,

|D4| ≈ −Ωq2 · a21 · a13 · a32 · a55 · e2aν1 .

Для коротких промежутков времени, в течение которых действует ударная нагрузка, поведение отноше-
ний Dk

D0
, k = 1, 2.3, 4, в бесконечности, конечно, будет определяться, в основном, из отношений этих же членов

наивысшей степени. Тогда получим

C01 =
Ωq2

a21
, C02 =

Ωq2 · a55 · e−2aν1

(a55 · a42 − a45 · a52)
, A01 =

Ωq2 · a11

a21 · a13
, A02 = −

Ωq2 · a32 · a55 · e−2aν2

a34 · (a55 · a42 − a45 · a52)
. (8)

Поставив значения этих постоянных в формулы (7), получим выражение искомого решения в параметрах
преобразований. Используя существующий аналитический метод [3], легко можно определить двукратные ори-
гиналы этих преобразований.

Отдельно определим оригиналы первого, второго и четвертого члена в сумме правой части (7):

1) −
σ0

(λ + 2µ) · ν2
1
↔ −

σ0 · c1

(λ + 2µ)
H
(︂

t −
z
c1

)︂
; (9)
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2) C01q =
Ωq3

a21
= −

σ0q2

(λ + 2µ)ν2
1

1(︁
1 + 2µ

λ

)︁
ν2

1 − q2
= −

σ0 · c2
1

(λ + 2µ)

⎡⎣H
(︁

t − z√
2c2

)︁
√

2c2
−

H
(︁

t − z
c1

)︁
c1

⎤⎦ , (10)

3) − ν2
2A01 = −ν

2
2 ·
Ωq2 · a11

a21 · a13
=

σ0ν
2
2

(λ + 2µ)ν2
1
·

2q2ν1[︁(︁
1 + 2µ

λ

)︁
ν2

1 − q2
]︁
· [(q2 + ν2

2)ν2]
↔
σ0 · (c2

1 − 2c2
2)

(λ + 2µ)
c1

c2

H
(︁

t − z√
2c2

)︁
√

2c2
. (11)

Заметим, что в последней формуле использовано очевидное приближение

ν2

ν1
≈

c1

c2
при p→ ∞.

Как видно из этих формул, сумма их тождественно равна нулю для соотношения c1 = 2c2, которое справед-
ливо для значения коэффициента Пуассона ν = 1

3 , и что для большинства материалов эта величина имеет как
раз это значение.

Это необыкновенно интересный результат, подтверждающий высокую точность определения причины ис-
следуемого явления, так как основной тон в формировании продольных движений на поверхности слоя задают
именно эти компоненты. Остальные два компонента в (7) представляют дифракционные волны, пришедшие с
низшей стороны, контактирующей с жидкостью. Они незначительны, и не в силах изменить волновую карти-
ну, сложившуюся от выше построенных решений. Тем не менее, внизу приводим готовые решения и графики
распределений для последующих значений времени, продольных скоростей на верхней границе слоя, соответ-
ствующие каждой волне отдельно.

Сперва рассмотрим продольные дифракционные волны, отразившиеся с низшей стороны слоя. Из фор-
мул (7), (8) и из выражений компонентов основного детерминанта (*) можно легко определить математическое
выражение этой волны. Оно следующее:

̃̇︀Wпрод. = C02q =
Ωq3 · a55 · e−2aν1

(a55 · a42 − a45 · a52)
=
σ0 · c1

(λ + 2µ)
c1 · (c2

1 − 2c2
2)q2e−2aν1

ν2
1 ·

(︁
p2
(︁

1 + ρж

ρ
·

aж
c1

)︁
+ 2 · c2

2q2
)︁ . (12)

Пусть ρж

ρ
·

aж
c1
= α, тогда обратное преобразование по Лапласу формулы (12), может представляться в следу-

ющем виде:

̃̇︀Wпрод.
σ0·c1

(λ+2µ)
=

0.5
(1 + α)

t∫︁
2

⎛⎝ τ1∫︁
2

(︁
J0
(︀
q (τ1 − τ)

)︀)︁(︁
J0

(︁
q
√
τ2 − 4

)︁)︁
dτ

⎞⎠ q sin

(︃
0.5

√︂
2

1 − α
1 + α

q (t − τ1)

)︃
dτ1.

Отметим лишь, что для получения этой формулы были использованы теоремы Эфрос, теоремы о свертках
и таблицы, приведенные в [3]. Теперь, совершив обратное преобразование по Фурье-косинус, можно привести
графики продольной скорости на верхней поверхности слоя.

Расчет произведен для ν = 1
3 и для следующих значений времени t = a

c1
n, и для безразмерной продольной

скорости ̃̇︀Wпрод. =
̃̇︀Wпрод.
σ0 ·c1
(λ+2µ)

.
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Первая дифракционная волна пересечет эту поверхность при n = 2.
Теперь вычислим соответствующий безразмерный компонент дифракционной поперечной волны, которая

пересечет верхний слой в моменте n = 4. Тогда получим

Ẇпопер. = −ν
2
2A02 = ν

2
2
Ωq2a32a55e−2aν2

a34(a55a42 − a45 · a52)
=
σ0c1

(λ + 2µ)
(c2

1 − 2c2
2)2q2e−2aν2

c2(p2 + 2c2
2)
(︁

p2
(︁

1 + ρж

ρ
·

aж
c1

)︁
+ 2c2

2q2
)︁ ,

̃̇︀Wпопер. = −
1

2α (1 + α)

t∫︁
4

(︂
cos
(︁q

2
(τ − 4)

)︁
− cos

(︂
q
2

1
√

1 + α
(τ − 4)

)︂)︂
· J0

(︁q
2

√
t2 − τ2

)︁
dτ.

Как видно из этих графиков, их значения достаточно малы; они меньше, чем сотая часть значения каждой
волны (9)–(11), которая образуется на верхней границе слоя. Естественно, они не могут вызвать ощутимых
колебаний. Следует отметить еще один интересный факт: в этих составляющих, движение вдоль направления
удара быстро меняет знак в обратный, как это показывают графики.

3. ЗАКЛЮЧЕНИЕ

Полученный результат позволяет сформулировать следующие интересное заключение: верхний слой объ-
ектов, находящихся на поверхности жидкости, почти не испытывает продольной нагрузки удара.
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Abstract. An interesting phenomenon discovered during earthquakes occurring in one area of the southern
part of Azerbaijan is studied. Taking into account the rare features of this part of the Earth’s crust, the
occurring event was modeled in the form of a mathematical problem of the dynamic theory of elasticity,
which revealed the cause of the phenomenon involved.

Keywords: earthquake, elastic layer, fluid, Lame equation

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025


