SOLVABILITY THEORY OF SPECIAL INTEGRODIFFERENTIAL
EQUATIONS IN THE CLASS OF GENERALIZED FUNCTIONS

© 2025 N.S. Gabbasov
Naberezhnye Chelny, Naberezhnochelninsky Institute of Kazan University,

Russia
e-mail: gabbasovnazim@rambler.ru

Received July 22, 2024
Revised July 22, 2024
Accepted August 23, 2024

Abstract. A linear integrodifferential equation with a special differential
operator in the principal part is studied. For its approximate solution in
the space of generalized functions a special generalized version of the
collocation method is proposed and justified. Bibl.16.

Keywords: integrodifferential equation, approximate solution, direct method,
theoretical justification

DOI: 10.31857/S00444669250108e9

1. INTRODUCTION
This paper is devoted to the approximate solution of the linear
integrodifferential equation (IDE)

(4x) () = x(q)(t)ﬁ (t—t)" + zp: j K (t,5)x) (5)ds = y(1), (1.1)

in whicht € I =[-1,1], numberst, e(-11),m,eN, j =1,/ ,andq,peZ" are fixed;

K;,j=0,p andy are known "smooth" functions, andx is the desired function.

The study of such equations is of undoubted interest both from the point of view of
theory (in particular, IMU (1.1) is a generalization of a number of classes of linear
integral equations of Fredholm type) and applications. Obviously, the problem of
finding the solution of IMU (1.1) in the class of ordinary smooth functions is
incorrectly posed. Consequently, the question of constructing the basic spaces
ensuring the correctness of this problem is important. When solving this question,
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it is quite natural to take into account the fact that in the case ofg = p =0 the IMU

(1.1) is transformed into a linear integral equation of the third kind (UTR) (i.e., in
this sense these equations are "related"). It is well known that UTRs are widely
used in various fields; in particular, they are found in a number of problems in the
theories of neutron transport, elasticity, and particle scattering (see, for example,
[1; 2, pp.121-129] and the bibliography given therein), in the theory of partial
equations of mixed type [3], and also in the theory of singular integral equations
with degenerate symbol [4]. In this case, as a rule, natural classes of solutions of
UTRs are special spaces of generalized functions of the type D or/ . ByD
(respectively V' ) we mean the space of generalized functions constructed by means
of the "Dirac delta function" functional (respectively the "finite part of the Adamar
integral" functional). A detailed review of the results obtained and an extensive
bibliography on UTR can be found in the monograph [5, pp.3-11, 168-173] and in
the thesis [6, pp.3-6, 106-114]. Based on the above-mentioned connection between
IMU (1.1) and UTR, the corresponding ideas and results for UTR can be
successfully used for correct formulation of the problem of solving equation (1.1),
development and theoretical justification of approximate methods for its solution
in spaces of generalized functions.

The IMU (1.1) at/=1,# =0, p=0 is studied in [7, pp.25-43], in which,
using known results on UTR, the Noter theory for such an equation in the classes
of smooth and generalized functions of type D is constructed. In [8] a complete
theory of solvability of a general IMU of the form (1.1) is developed at p =0 in
some space of generalized functions of the type D . It should be noted that the
investigated IMUs are solved exactly only in very rare special cases. Therefore, the
development of effective methods of their approximate solution in spaces of
generalized functions with the corresponding theoretical justification is especially
urgent. Certain results in this direction have been obtained for the IMU (1.1) at
p =0 . Namely, in [8-11] direct projective methods of its approximate solution
based on the application of standard and some special polynomials, as well as
splines of the first and second orders are proposed and justified.

In the present paper, for the first time, a complete theory of solvability of
IMU (1.1) in some space of the typeD of generalized functions (Fredholm
equation, solvability conditions, algorithm for finding the exact solution, sufficient
conditions for continuous reversibility of the operator4 ) is constructed.
Moreover, a polynomial direct projection method specially adapted to the
approximate solution of IMU (1.1) in the class of generalized functions is
developed and its justification in the sense of [12; Ch.1, §1-5] is given. Exactly, we
prove the existence and uniqueness theorem of the solution of the corresponding
approximate equation, establish estimates of error of this solution, and prove
convergence of the sequence of approximate solutions to the exact solution in the



space of generalized functions. The questions of stability and conditionality of
approximating equations are also investigated.

2. SPACES OF BASIC AND GENERALIZED FUNCTIONS

LetC =C(I) be the Banach space of all functions continuous on/ with the
usual max-norm andmeN . We denote byC{m;0}= C!"(I) the set of all

functions f € C , having at a point? =0 a Taylor derivative f tm} (0) of orderm (see,
e.g., [13]). Let us call it a class

point-smooth functions (naturally we consider thatC {O;O} =(C ). Let us supply the

vector space C {m;O} with the norm

2.1)
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whereT : C{m;O} — C is a "characteristic" operator of classC {m;O} , defined as

follows:
Tf = (T" f)(t) = [f(z) - ’fo“ ((»f‘/i!} t"=F(t)eC, (2.2)
F(0)=limF(2).

Fair (see, for example, [5, p. 12,14])

Lemma 2.1. i. The inclusion of f € C {m;O} is equivalent to the expression
m—1
f(O)=1"F()+) ot (2.3)
i=0

If =F €C andwith the precision of an avoidable discontinuity att=0 , and
fB0y=ail, i=0,m—1.
ii. The spaceC {m;O} is by norm (2.1) completely and normally embedded in

the space .C
Further, we introduce the following class of "point-smooth" functions:

C{m,q;0} s{f eC{m;0}: f7(0)=0, i=0,q-1,qeZ*,¢q <m}.

Hence, given (2.1) - (2.3) (in which we havei =¢g,m —1 ) by norm (2.1), the space

C {m,q;O} is completely and normally embedded in .C
Let us denote byC ) =l (1) the vector space ofq times continuously
differentiable on/ functions. By virtue of the Taylor formula with integral residue,

it is clear that the function / belongs to the class C ) if and only if it has the form
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f@O=(JF)(t)+ Db, (t+1), (2.4)

&
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where
t

JF=(J,,F)0)=((g-1))" [(t=5)" F(s)ds, (2.5)

-1

andD' [ = f(1)=F(t)eC, fV(-1)=b,j!, j=0,g-1; at that
J:.C—C9, (JF) ' =J _, F, j=0,q-1, D'JF=F.

q-1-j

(9)

In the vector space C*"’ we define a special norm

”f”(q) = Hqu HC + Z‘f(j)(—l) , feCY (2.6)

From relations (2.4), (2.6) and evaluation of the integral (2.5) by max-norm
it easily follows
Lemma 2.2. The space C\?

space .C

with norm (2.6) is complete and embedded in the

Corollary 1. The normal norm|-| inC'" and (2.6) are equivalent, i.e.,

there exists a constantd, >1 such

q .
[ 7 <M o <y Wl =277

LetCY¥ =C'"(I)= {f eC?: fO(-=1)=0, i=0,g-1 } be the Banach space

f cC9.

C

of smooth functions with norm .|| f ||(q) = Hqu HC

In further studies we will need one more class of smooth functions:
Cff),(q) = Cfil),(q)([) = C(i) ﬂ CE?), 1= q+p.

By virtue of (2.4) it is obvious that the inclusion of € C*”'? is equivalent to the

representation of
A-1
SO=(7 ) )+ X)) e @)
k=q
Hence, based on Lemma 2.2, it is obvious that by the norm

Mo =7, + i\f D) 2.8)

the space Cff)’(q) is full and nested inC . Therefore, the usual norm inC* and (2.8)

are equivalent:
17y <1l < dil ANy 1o €0 d 21 (2.9)

Lemma 2.3. For any function f € C'™"? the following is true

H fal " 1£],,,- (2.10)




Proof. By virtue of (2.7) we have

79 =(J“qf“))(t)+{

A-1

(9)
S (1) /k!} =

k=g

-1 )
=/, /7)) + pz SN (e+1) /),
j=0
whence by virtue of (2.4) - (2.6) and (2.8) we find
W _|re @] o8| a1yl —
| 7 (») =|p7r). +;‘fq )=l

as requested.

In the further study of the regular integrodifferential operator we will need
one important property of "point-smooth" functions. In this connection, let us
introduce the following class of "smooth" functions:

= (D ={peC{m0}: T"peC”, r=0,1,2,.},
where 7" is a "characteristic" operator of the classC {n;O} , defined according to

the rule (2.2). We will use the family
Y, = Cim ) =0, p, g<m,
wherem, g and p are fixed parameters appearing in IMU (1.1) at ./ =1

Lemma 2.4. For any functionp e, , j = @ there is the equality

(0)" ()= 9“7 (0), j =0, p, k=0,m—g 1. 2.11)
Proof. At j =0 the property is obvious. By virtue of the structure (2.3) of the

"point-smooth" function we have
m—q—2+j

p()=1""" D ()+ ) att, (2.12)

k=0
where

@, =T""pecC, " (0)=ak!,k=0,m—q -2+ ], j=1p.
Differentiating (2.12) successively j times by applying the usual Leibniz

formula, we easily obtain the following representation:
m—q—2

o= (T )0+ Y. 7t =
k=0

m—q—2

=", L, @ 0O+g,O ]+ Y 1 a0t (2.13)
k=0
in which g; is expressed in a certain way through®; , with g;()=o(l)

att >0, a 7, , Eﬁ(k+l),jzﬁ, T =1

I=1
According to (2.13), (2.3), (2.12) and the definition of the Taylor derivative
(see, for example, [5, p.12]) we find the derivatives of the corresponding orders:



k —_—
((”()) O =7, a,k'=a. (k+j), k=0,m—q-2;

(2.14)
A\ {m—g-1} . . .
(go(’)) (O)E(m—q—l)!hm(T ‘ 1(p(’))(t)—
=(m-q-1), 111,133<D (£)=(m—q—1+j)lim® (z)=
=" 0), j=1p. (2.15)
On the other hand, by virtue of (2.12) and (2.3) we have
" 0)=a,,,(k+j), k=0,m-q-2, j=1p. (2.16)
From (2.14) to (2.16) follows (2.11), which was required.
Let us now construct the basic space in our research
¥ =C"{mq;0}={yeC{mq0}:Ty=T"yeC?|
Let's set the norm in it
| I, =171, yeY. (2.17)
Lemma 2.5(see [14]). i. Inclusion ofpeY is equivalent to the
representation
p-1 . m—1 )
o(t)=(UJ, @) +1" Y o, (t+1) + Bt (2.18)
Jj=0 i=q
with

D'Tp=0eC, (Tp)"(-D=a,!,j=0,p—1, ¢"(0)=pil,i=gm—1
Uf =t" f (1), operatorJ ,_, defined according to (2.5)

ii. The spaceY with respect to the norm (2.17) is complete and embedded in
the space C{m,q;O}.

The criterion of compactness of sets in the space Y establishes

Lemma 2.6 (see[14]). The setM Y is relatively compact inY if and only

if: \)M is bounded; (i1) the family D'T(M) of functions continuous onl is
equally continuous.

Further over the spaceY of basic functions we construct the family
X= fo)’(q) {m;0} of generalized functions x(t) of the following form
m—q—1

x(t)=z(0)+ Y. 7,87 @),

(2.19)
wheretel,z e Cff)’(q)

A=q+ p,y. € R are arbitrary constants, andd and s are
respectively the Dirac delta function and its "Taylor" derivatives, acting on the

spaceY of principal functions according to the following rule

(8".y)= J 51 (1) ydr =1y y0),  i=0m—g-1

(2.20)
Obviously, the vector space X is Banach with respect to the norm




m—g—1

[l =02l + 2 17l (2:21)

i=0
We conclude this section by giving a property about the "mixed" derivatives
of the delta function, which is needed later on.
Lemma 2.7. On the spaceY; of basic functions the equality is true

(5{,-} (t))(j)

Proof. Note that (see, e.g., [15, p.419]) for any functionp €Y, there is a

:§{i+j}(t), j=0,p, i=0,m—q-1. (2.22)

relation
((éﬁ} )(j) ’ (0) =(-1) (5{1'} ’ (D(j)) = (1)’ ((D(j) ){i} (0), (2.23)

j=0,p, i=0m—qg—L
On the other hand, by virtue of (2.20) we have
(67, p)= -1y o), j=0,p, i=0m—g-1. (2:24)
Hence, the required equality (2.22) follows from (2.23), (2.24) and (2.11).

3. THE FREDHOLMICITY OF THE STUDIED IDU
Let IMU (1.1) be given. For the sake of reducing cumbersome calculations
and simplifying the formulations, without limiting the generality of ideas, methods
and results, we will hereafter assume/=1,# =0 , i.e., we consider the IMU of the

form
(Ax)(t)=(Vx) (@) +(Kx)() = y(2), tel, (3.1)
¥ =UDY, DY f = f9(0), Ug =" g(0), Kx = Y [ K (1,52 (s)ds,

where ¢, peZ*,meN,qg<m;yeY =C" {m,q;0}, K ;are known kernels with the
following properties:
{k}
K (t,) €Y, K, (5) €Y, 0,(5)=(K;) " (0,5)C,

v, 0=(K)" @0yeY, j=0p k=gm—l, i=0m—g— (2

andx € X is the element you're looking for.
Theorem 1. Under the conditions (3.2), the operator A: X =Y fredholms.
Proof. Let us study the
Vx=1"x") = y(t), yeY. (3.3)
Let us show that the operator’ : X — Y is bounded. By virtue of (2.19) and (3.3)

we have
m—q-1

(D7x) (1) =(D'z) (1) + Z yi5{i+q}(t):(qu)(t)+m2i7k_q5{k}(t). (3.4)



Then, given the property
(e7-" @00)= (8%, 00) = (1) (- 0) @ =0, (35)
k=0,m—-1,¢peC,
we obtainVx =UDx =UD?z, whence, on the basis of relations (2.17), (2.18),

(2.21) and (2.10) it follows that
IIVxII =HUD"ZHY =|rup*4]

=[o*4]

() » ”Z”(ﬂ) :
Le. V=]
Now in the space X EDE?)’(q){m;O} we find the solution of equation (3.3)

and the index of the operator} . From Equations (3.4) and (3.5) it follows that in
the space X' the general solution of the homogeneous equationVx = 0 has the form

X—>Y

m—q-1

(1) = Z 7,80, 7 eR;

hence, a(V) =dimkerV =m—q. On the other hand, the inhomogeneous equation

(3.3) is solvable inX if and only if the additional conditions

(5{’} (), y) =0, i=gq,m-1. If they are satisfied, the general solution of equation

(3.3) is represented by the formula

m—q—1

X' =(J,Ty) 0+ 27/5 (1), 7,€R.

This means that f(V)=dimcokerV =m—gq. Thus,indV=a(V)-p1)=0, ie.,
the operator} : X — Y fredholms.

Next, let us discuss the properties of the integrodifferential operator K . By
virtue of relations (3.1), (3.2), (2.19), (2.22) and (2.20) we have

p m—g-1

(Kx)(2) = (KZ)(l‘)+Z > Dy (o). (3.6)

Jj=0 i=0
Hence, taking into account the conditions (3.2), we see that KxeY,x € X.
Before proceeding to the evaluation of the image (3.6) of the operator K we
assume the following notations:

D'TK,

. d, maxZiH(ZKj ) (-1,s) )

Jj=0,p

oo = max S|,

zqul

d, = max
=0,p

Then, using definition (2.17), evaluation (2.9) and definition (2.21), we

successively find that
m—q—1

&, <|&), + 33 Il =

=0 =0



ZJ.(DPTK )(t S)Z (S)ds

J -1

+S

C 1=0

> j (1K) (—1,s)z(f>(s)ds+

J -1

220yl <

+2dyd, ||| ,, + 2d4d1 2]l ., + dSZ| 7, <

)

k=g

> j 0 ()2 (s)ds

J -1

<2d,d || "

dy=2d,(d,+d,+d,)+d;.

Consequently, the operator K acts fromX toY in a restricted manner, whereby
[&]= ]
Further, letL = {x} c X be an arbitrary bounded set. Reasoning analogously

X—>Y

to the case of integral equations of the third kind (see [5, p.52, 53]), using Lemma
2.6 it is easy to show that the setM = K(L) is relatively compact inY . In other
words, the operator K : X = Y is quite continuous. Then the statement of Theorem
1 follows directly from the fact that the perturbation of a nonetherian operator by a
completely continuous operator preserves nonetherianism and does not change its
index.

4. CONTINUOUS REVERSIBILITY OF THE INTEGRODIFFERENTIAL

OPERATOR
Consider the IMU (3.1) in which the kernelsK; are subject to conditions

(3.2),yeY, andxe X is the desired generalized function of the form (2.19).

Taking into account relations (2.19), (3.4) - (3.6), we transform equation (3.1) to

the form
m—q-1

(42)D =y = 3 e fi(0), 4.1)
Wherefl.(t)zi(—l)jwﬁ(t), CiE(—l)ijfl., i=0,m—q—1. Our problem is to find

the function z € CM*) and arbitrary constants ..

Lemma 4.1. Let the following requirements be satisfied:
{k} N~ —
K,(t,)eY,p,(s) E(Kf)r 0,s)eC,yeY, j=0,p,k=qg,m—1.
Then IMU (3. 1)(A : C@’(") -7 ) is equivalent in the space Cff)’(q) to IMU
p 1
Be=(D'x)(0)+ ) [(TK, )(t.5)x" (s)ds = (Ty)(0)

J=0 -1

and ratios

p 1
Y [0, (s)ds =y (©0), k=gm-1

J=0_1



Proof. By virtue of expression (2.3) it is obvious that for any functiong € Y

there is an equivalence:
g=0Te=0,g"(0)=0, k=g,m—1. (4.2)
Then, taking in (4.2)g=Ax—yeY,xe Cff)’("), yeY, we see that the statement of

the lemma is true.
It follows from this lemma that equation (4.1) is equivalent to IMU

m—q—1

(B2)(1)=(Ty)() = D, c(Tf)() (4.3)

i=0
in the space C(l)’(") and relations

m—q—1

"0)- cho,k(s)z (s)ds—ch (0)=0, k=g,m—1 (44)

J=0_1

Let us first study in detail the IMU of the form (4.3) with the operator : B
p L ‘
(B2)(0)=2"0)+ Y [ 1, (1,)2" (9)ds = @), (4.5)

J=0_1

inwhichy, =TK,, j= @, fe C'”). We will use the substitutionz'*) = =u(t) e cl
By virtue of (2.4), (2.5) and the definition of the class Cff we have
Z=Jq_1u,Z(j) =J ,u, j=0,g-1 (4.6)

q-1-j

Let us now study the operator

Mz = Zp: J K (t,s)z(j)(s)ds.

J=0-1
Let us first consider the case p <¢q . By changing the order of integration in the

double integral, we find that

(M2)0 =2 ((4-1-)) Iu(z s)(f )“u(p)d;a}ds-

:Z((q—l—j ) J.M(,O)[J.,u](t s)(s— p)*” -1- JdSJd

-1
Hence, in this case IMU (4.5) is equivalent to the following Fredholm equation of
the second kind in space C'*’:

Gu=u(t) + [ G, (t.pu(p)dp = f (1) (4.7)

where
_1 1

G,(t.p)= Z(q 1-))! ju (Ls)s—p)ds.  (48)

At p 2 ¢ taking into account (4.8) we have



(Mz)(t) = j Loy p)dp+2 j (b sy (s)ds =

= f G, -u(p)p+ J u,(t, p)u(p)dp +Z I 1,6, P (p)d p. (4.9)

-1
Next, let us introduce the nuclei into consideration:

|Gt o)+ u,tp) npu k=0
8 (ta ,0) =
M, (8, p), ecu k=1,p—q.
Then taking into account (4.9) IMU (4.5) takes the form

p—q

Lu=u(t)+ 3 [ gt (p)dp= 1 (1), (4.10)

k=0 _1

moreover g, (t,-)e C”

Thus, at p < g , substitution 29 =y equivalently leads IMU (4.3) to the

equation of the second kind
m—q-1

(Gu)(®) =(Ty)(t) - Z (7£)(®). (4.11)

Letv =—1 not be an eigenvalue of equatlon (4.11) (or the kernel G, ) and R

be the solving operator of this equation. Then the function

u'(t)=(RTy)(t) - Z(RTﬁ)(t)

is the only smooth solution of equation (4.11). Hence,

2 (0 =(J, 0 )0)=(J, RTy) ()= e (J, RIS, ) ()

is the only smooth solution of IMU (4.3), which will be the solution of the initial
equation (4.1) if by virtue of (4.4) the constants{ci} satisfy the quadratic system of

linear algebraic equations (SLAE)

m—q-1

> (05" =(0)"0), k=gm-1, @412

i=0
where the operatorQ = £ — KJ_|RT mapsY toY , and £ is a unit operator in .Y

In the casep>¢g , taking into account (4.9) and (4.10), IMU (4.3) is
equivalent to the Fredholm equation of the II kind

m—q-1

(Lu)()= (@)~ D e (Tf @) (4.13)

i=0
with the enabling operator R:Cc? @
Thus, it's been proven
Theorem 2. Let the following conditions be satisfied.



a) kernelsK ,,  j=0,p , satisfy the requirements (3.2), and the y €Y

b) the numberv =—1 is not an eigenvalue of equation (4.11) atp<gq
(respectively, of equation (4.13) in the case of ); p > ¢q

c) the determinant of SLAU (4.12) is different from zero (at p > q the role of

the operator R is played by R ).
Then for any right party € Y the IMU (3.1) has a single generalized solution

x € X ,represented by the formula

m—q—1 m—q—1

x(0)=(J,ST) O = Y ¢ (J,.8TH) 0+ Y (<18 (o),

i=0 i=0
where S =R at ,p<q § =R in the case ofp>q , and{c:} is the only solution of
SLAU of the form (4.12).

Corollary 2. Under the conditions of Theorem 2, the integrodifferential
operator A: X — Y , defined by equality (3.1), is continuously reversible.

5.GENERALIZED COLLOCATION METHOD (GCM)
Let IMU (3.1) be given, in which the kernelsK',, j=0,p , have properties

(3.2),yeY , andxe X is the desired element. We will look for its approximate

solution in the form
m—q—1

x, =x,(6{c,})=2,0+ Y ¢80, (5.1)

n+A-1
Zn(t)E Z Citi’ iEq-i_pa n:2939---- (52)

i=q

(n)

j M

OMK, from the quadratic SLAU (n+m+ p —q) -th order:
(D7Tp,)(v,)=0. k=Ln, (Tp,)"(-D=0, j=0,p—1,

p0(0)=0, i=g,m—1, (5.3)

The unknown parametersc; =c j=q,n+m+ p—1, are found, according to

where p (1) = p/(t)=(Ax, — y)(t) is the non-convexity of the approximate
solution, and{vk} c [ is a system of Chebyshev knots of genus I(or II)

For the computational algorithm (3.1), (5.1) - (5.3) is true

Theorem 3: Suppose that the homogeneous IMUAx =0 has only zero
solution inX (e.g., under the conditions of Theorem 2), and the functions
h,=D!TK, (byt ), g, =D"Ty,;, j=0,p,i=0,m—q—1andD"Ty belong to the
Dini-Lipschitz class. Then for allne N,n=n,, the SLAU (5.3) has a single

* & *
solution {C j} and the sequence of approximate solutionsx, = x, (t;{c J}) converges



to the exact solutionx = A”'y of equation (3.1) by the norm of the space X with

rate

Ax, =

* *
X, =X

{{Z[ 1(h)+z 1(g,l)j (DpTy)}lnn}, (5.4)

where E,(f) is the best uniform approximation of the function f € C by algebraic
polynomials of degree no higher thanl , andE,(-) denotes the functional E, (-)

applied on the variable .t
Proof. Obviously, the IMU (3.1) is represented as a linear operator equation
Ax=Vx+Kx=y,xe X =D {m;0},yeY = ct?) {m,q;0}, (5.5)
in which the operator 4: X — Y is continuously reversible.
Let us also write the system (5.1) - (5.3) in operator form. For this purpose,
we construct the corresponding finite-dimensional subspaces. Namely, we denote
byX, c X the(n+m+ p—¢q) -dimensional subspace of elements of the form

(5.1), and byY cVY we take the classH”“”*pl_span{ }WHPI . Then we
q

introduce the linear operatorl’ =T" :Y =Y according to the rule

n+m+p—q
rny = 1—‘n+m+pfq (y’t) = (UJP 1L”DpTy)(t) *
! "+l G
+Z(Ty ( pl ¥y ( ) Zy{ }(O)F’ (5.6)
Jj=0 =q '

-l : . .
where L :C — Hg‘l =]l = span{t’}o is an interpolation operator Lagrangian

over the system of nodes{v, }' . Then the system (5.1) - (5.3) is equivalent to the
following linear equation:
Ax =Vx +I' Kx =1'y, x X I yel. (5.7)
It is not difficult to verify this by carrying out the corresponding reasoning given in
the proof of Theorem 3 [8].
Thus, to prove Theorem 3, it is sufficient to establish the existence,

singularity and convergence of solutions of equations (5.7). For this purpose, we
need the approximating property of the operator .I",

Lemma 5.1. For any functiony €Y the following estimation is valid
||y—Fny . n_l(DpTy)lnn, n=2,3,.. (5.8)

(hereinafterd, (z’ = 7,9) are some constants whose values do not depend on the

number ). n
The fairness of this lemma follows easily from the representation (2.18),
definitions (5.6), (2.17), and evaluation (see, e.g., [12, p.107])

JE L (f)nn, feC.




Let us now discuss the "closeness" of the operators 4 and 4, on the subspace
X, . Using equations (3.1), (5.7) and the estimate (5.8), for an arbitrary element
x, € X, we find that
|4x,—4,x ,~T.Kx,|, <d.E,(D’TKx,)Inn. (5.9)
By virtue of (3.6) and (5.1) we have

Ko )0 =(Kz)O+ Y S (< en, (0.

j=0 i=0

Hence,

D’TKx, = Z j hi(t,5)z (5)ds +> > (=1 ¢,y 2 1(0). (5.10)

J=0 -1
In order to polynomialize the function D’TKx € C , we construct the

following element:

(P50 =Y [ 5)2) ()ds + 23 (1) 08040, (5.11)

J o
where h’

n—1

approximation for/, (by? ) and g, , respectively. According to the structure (5.11)
itis clear that .P_x eIl
Based on expressions (5.10) and (5.11), evaluation (2.9), and definition

(2.21), we successively derive the intermediate evaluation
E, (D’TKx,)<|D"TKx, - P, x,

andg’ —are polynomials of degreen—1 of the best uniform

= max
tel

Z j (h,—h, ), s)z“>(s)ds+22( D e (85— g0 ) @0)] <
z Z ,11<h>+zz|c,w £, (8))
WZ ’ E,(g)<
(g,)=

x|, dy=2d. (5.12)

= d {Z|:E:11(hj) + ZEn—l (gji):|}

From inequalities (5.9) and (5.12) follows the desired "closeness" estimate of the
operators 4 and : 4,

— A XI1_>ySd9{Z|:E:zl(hj)+zEnl(gji):'}lnn' (5.13)

J
Then, based on the estimates (5.13) and (5.8) from Theorem 7 (see [12; Ch.1, §4]),
we obtain the statement of Theorem 3 with error estimate (5.4).



Corollary 3. If the functions/, (byr ),g; andD"Ty belong to the class

H!(S) , then under the conditions of Theorem 3 the is true
Ax,=0(n"“Inn), r+leN,ae(0,1],
where
H!'(S)= {f eC(1): a)(f(’);A) <SA*, S=const> 0},

anda)( f ;A) is the modulus of continuity of the functionf€C with step
A, 0<AL2.

6. CONCLUDING REMARKS
Remark 1. According to the definition of norm in the space
X= fo)’("){m;o} it is easy to see that the convergence of the sequence (x:) of
approximate solutions to the exact solutionx = A™'y in the metric X implies the

usual convergence in the space of generalized functions, i.e. weak convergence.
Remark 2. When numerically solving operator equations Ax = y , a natural

question arises about the rate of convergence of the nonconvexity
p.(t)=(Ax, — y)(t) of the method under study. One of the results in this direction

follows easily from the main theorem 3, namely: if the initial data/,,g; and D*Ty
of the equation (3.1) belong to the classH, (0<a<1l, r=0,1,2,...) , then
under the conditions of Theorem 3 the estimate is valid H p:HY =0(n""""Inn).
Remark 3. Atg =0 the studied IMU (3.1) is an IMU of the third kind with
the operator 4: D) {m;0} — Cém}’(p ) and the direct projection method (5.1) -

(5.3) is a special variant of OMK for IMUs of the third kind. Consequently,
Theorem 3 contains the known results [16] on the justification of a special variant
of OMK for approximate solution of third-order equations in the class of
generalized functions.

Remark 4. Since, under the conditions of Theorem 3, the approximating
operators A, have the property of the HA; 1” =0(1), 4':Y, >X, n>n,

it is obvious (see [12; Ch.1, §5]) that the direct method for the IMU (3.1) proposed
in this paper is stable with respect to small perturbations of the initial data. This
allows us to find a numerical solution of the studied equations on a computer with
any predetermined degree of accuracy. Moreover, if the IMU (3.1) is well-
conditioned, then the SLAE (5.3) is also well-conditioned.
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