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1. INTRODUCTION
This paper is devoted to the approximate solution of the linear 

integrodifferential equation (IDE) 
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in which [ 1,1],t I∈ ≡ −  numbers ( )1,1 , , 1,j jt m N j l∈ − ∈ =  , and ,q p Z +∈  are fixed;

, 0,jK j p=  and y  are known "smooth" functions, and x  is the desired function. 
The study of such equations is of undoubted interest both from the point of view of 
theory (in particular, IMU (1.1) is a generalization of a number of classes of linear 
integral equations of Fredholm type) and applications. Obviously, the problem of 
finding the solution of IMU (1.1) in the class of ordinary smooth functions is 
incorrectly posed. Consequently, the question of constructing the basic spaces 
ensuring the correctness of this problem is important. When solving this question, 
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it is quite natural to take into account the fact that in the case of 0q p= =  the IMU 
(1.1) is transformed into a linear integral equation of the third kind (UTR) (i.e., in 
this sense these equations are "related"). It is well known that UTRs are widely 
used in various fields; in particular, they are found in a number of problems in the 
theories of neutron transport, elasticity, and particle scattering (see, for example, 
[1; 2, pp.121-129] and the bibliography given therein), in the theory of partial 
equations of mixed type [3], and also in the theory of singular integral equations 
with degenerate symbol [4]. In this case, as a rule, natural classes of solutions of 
UTRs are special spaces of generalized functions of the type D  orV  . By D  
(respectivelyV  ) we mean the space of generalized functions constructed by means 
of the "Dirac delta function" functional (respectively the "finite part of the Adamar 
integral" functional). A detailed review of the results obtained and an extensive 
bibliography on UTR can be found in the monograph [5, pp.3-11, 168-173] and in 
the thesis [6, pp.3-6, 106-114]. Based on the above-mentioned connection between 
IMU (1.1) and UTR, the corresponding ideas and results for UTR can be 
successfully used for correct formulation of the problem of solving equation (1.1), 
development and theoretical justification of approximate methods for its solution 
in spaces of generalized functions.  

The IMU (1.1) at 11, 0, 0l t p= = =  is studied in [7, pp.25-43], in which, 
using known results on UTR, the Nöter theory for such an equation in the classes 
of smooth and generalized functions of type D  is constructed. In [8] a complete 
theory of solvability of a general IMU of the form (1.1) is developed at 0p =  in 
some space of generalized functions of the type D  . It should be noted that the 
investigated IMUs are solved exactly only in very rare special cases. Therefore, the 
development of effective methods of their approximate solution in spaces of 
generalized functions with the corresponding theoretical justification is especially 
urgent. Certain results in this direction have been obtained for the IMU (1.1) at

0p =  . Namely, in [8-11] direct projective methods of its approximate solution 
based on the application of standard and some special polynomials, as well as 
splines of the first and second orders are proposed and justified. 

In the present paper, for the first time, a complete theory of solvability of 
IMU (1.1) in some space of the type D  of generalized functions (Fredholm 
equation, solvability conditions, algorithm for finding the exact solution, sufficient 
conditions for continuous reversibility of the operator A  ) is constructed. 
Moreover, a polynomial direct projection method specially adapted to the 
approximate solution of IMU (1.1) in the class of generalized functions is 
developed and its justification in the sense of [12; Ch.1, §1-5] is given. Exactly, we 
prove the existence and uniqueness theorem of the solution of the corresponding 
approximate equation, establish estimates of error of this solution, and prove 
convergence of the sequence of approximate solutions to the exact solution in the 



space of generalized functions. The questions of stability and conditionality of 
approximating equations are also investigated.  

 
2. SPACES OF BASIC AND GENERALIZED FUNCTIONS 

 
Let ( )C C I≡  be the Banach space of all functions continuous on I  with the 

usual max-norm and m N∈  . We denote by { } { }
0;0 ( )mC m C I≡  the set of all 

functions f C∈  , having at a point 0t =  a Taylor derivative { }(0)mf  of orderm  (see, 
e.g., [13]). Let us call it a class 

point-smooth functions (naturally we consider that { }0;0C C≡  ). Let us supply the 
vector space { };0C m  with the norm 
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where { }: C ;0T m C→  is a "characteristic" operator of class { };0C m  , defined as 
follows: 
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Fair (see, for example, [5, p. 12,14]) 

Lemma 2.1. i. The inclusion of { };0f C m∈  is equivalent to the expression 
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Tf F C= ∈  andwith the precision of an avoidable discontinuity at 0t =  , and 
{ }(0) !, 0, 1.i

if i i mα= = −  
ii. The space { };0C m  is by norm (2.1) completely and normally embedded in 

the space .C  
Further, we introduce the following class of "point-smooth" functions: 

{ } { } { }{ }, ;0 ;0 : (0) 0, 0, 1, , .iC m q f C m f i q q Z q m+≡ ∈ = = − ∈ <  

Hence, given (2.1) - (2.3) (in which we have , 1i q m= −  ) by norm (2.1), the space
{ }, ;0C m q  is completely and normally embedded in .C  

Let us denote by ( ) ( )( )q qC C I≡  the vector space ofq  times continuously 
differentiable on I  functions. By virtue of the Taylor formula with integral residue, 
it is clear that the function f  belongs to the class ( )qC  if and only if it has the form  
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and ( ) ( )( ) ( ) , ( 1) !, 0, 1;q q j
jD f f t F t C f b j j q≡ = ∈ − = = −  at that 
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In the vector space ( )qC  we define a special norm 
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From relations (2.4), (2.6) and evaluation of the integral (2.5) by max-norm 
it easily follows 

Lemma 2.2. The space ( )qC  with norm (2.6) is complete and embedded in the 
space .C  

Corollary 1. The normal norm ( )qС
⋅  in ( )qC  and (2.6) are equivalent, i.e., 

there exists a constant 0 1d ≥  such  
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Let { }( ) ( ) ( ) ( )
1 1 ( ) : ( 1) 0, 0, 1q q q iC C I f C f i q− −≡ ≡ ∈ − = = −  be the Banach space 

of smooth functions with norm . ( )
q

q C
f D f≡  

In further studies we will need one more class of smooth functions: 
( ),( ) ( ),( ) ( ) ( )
1 1 1( ) , .q q qC C I C C q pλ λ λ λ− − −≡ ≡ ≡ +  

By virtue of (2.4) it is obvious that the inclusion of ( ),( )
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Hence, based on Lemma 2.2, it is obvious that by the norm  
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the space ( ),( )
1

qC λ
−  is full and nested inC  . Therefore, the usual norm in ( )C λ  and (2.8) 

are equivalent: 
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Lemma 2.3. For any function ( ),( )
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−∈  the following is true 
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Proof. By virtue of (2.7) we have 
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whence by virtue of (2.4) - (2.6) and (2.8) we find  
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as requested. 
In the further study of the regular integrodifferential operator we will need 

one important property of "point-smooth" functions. In this connection, let us 
introduce the following class of "smooth" functions: 

{ } { } { }{ },( ) ,( ) ( )
0 0 ( ) ;0 : , 0,1,2,... ,n r n r n rC C I C n T C rϕ ϕ≡ ≡ ∈ ∈ =  

where nT  is a "characteristic" operator of the class { };0C n  , defined according to 
the rule (2.2). We will use the family  

{ } ( )1 ,
0 , 0, , ,m q j j

jY C j p q m− − +≡ = <  
where ,m q  and p  are fixed parameters appearing in IMU (1.1) at . 1l =  

Lemma 2.4. For any function , 0,jY j pϕ∈ =  there is the equality 

( ){ } { }( ) (0) (0), 0, , 0, 1.
k k jj j p k m qϕ ϕ += = = − −   (2.11) 

Proof. At 0j =  the property is obvious. By virtue of the structure (2.3) of the 
"point-smooth" function we have 
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where                     
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Differentiating (2.12) successively j  times by applying the usual Leibniz 

formula, we easily obtain the following representation: 
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According to (2.13), (2.3), (2.12) and the definition of the Taylor derivative 
(see, for example, [5, p.12]) we find the derivatives of the corresponding orders: 
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On the other hand, by virtue of (2.12) and (2.3) we have 
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From (2.14) to (2.16) follows (2.11), which was required. 
Let us now construct the basic space in our research: 
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Let's set the norm in it  
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Lemma 2.5(see [14]). i. Inclusion of Yϕ∈  is equivalent to the 
representation 
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with ( )( ) { } ( ), ( 1) !, 0, 1, 0 !, , 1;j ip
j iD T C T j j p i i q mϕ ϕ α ϕ β= Φ∈ − = = − = = −

( ),mUf t f t≡ operator 1pJ −  defined according to (2.5). 
ii. The spaceY  with respect to the norm (2.17) is complete and embedded in 

the space { }, ;0 .C m q  
The criterion of compactness of sets in the spaceY  establishes  
Lemma 2.6 (see[14]). The set M Y⊂  is relatively compact inY  if and only 

if: (i) M  is bounded; (ii) the family ( )pD T M  of functions continuous on I  is 
equally continuous. 

Further over the spaceY  of basic functions we construct the family
( ) { }( ),

1 ;0qX D mλ
−≡  of generalized functions ( )x t  of the following form 

{ }
1

0
( ) ( ) ( ),

m q
i

i
i

x t z t tγ δ
− −

=

≡ + ∑     (2.19) 
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it I z C q p Rλ λ γ−∈ ∈ ≡ + ∈  are arbitrary constants, andδ  and { }iδ  are 
respectively the Dirac delta function and its "Taylor" derivatives, acting on the 
spaceY  of principal functions according to the following rule: 
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Obviously, the vector space X  is Banach with respect to the norm  



1

( )
0

.
m q

iX
i

x z
λ

γ
− −

=

≡ + ∑      (2.21) 

We conclude this section by giving a property about the "mixed" derivatives 
of the delta function, which is needed later on. 

Lemma 2.7. On the space jY  of basic functions the equality is true  
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Proof. Note that (see, e.g., [15, p.419]) for any function jYϕ∈  there is a 
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Hence, the required equality (2.22) follows from (2.23), (2.24) and (2.11). 
 

3. THE FREDHOLMICITY OF THE STUDIED IDU 
Let IMU (1.1) be given. For the sake of reducing cumbersome calculations 

and simplifying the formulations, without limiting the generality of ideas, methods 
and results, we will hereafter assume 11, 0l t= =  , i.e., we consider the IMU of the 
form 
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following properties: 

( ){ }
( , ) , ( , ) , ( ) (0, ) ,

k

j j j jk j t
K t Y K s Y s K s Cϕ⋅ ∈ ⋅ ∈ ≡ ∈  

( ){ }
( ) ( ,0) , 0, , , 1, 0, 1;

i j

ji j s
t K t Y j p k q m i m qψ

+
≡ ∈ = = − = − −  (3.2) 

and x X∈  is the element you're looking for. 
Theorem 1. Under the conditions (3.2), the operator :A X Y→  fredholms. 
Proof. Let us study the  
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Let us show that the operator :V X Y→  is bounded. By virtue of (2.19) and (3.3) 
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Then, given the property  
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we obtain ,q qVx UD x UD z≡ =  whence, on the basis of relations (2.17), (2.18), 
(2.21) and (2.10) it follows that  
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and the index of the operatorV  . From Equations (3.4) and (3.5) it follows that in 
the space X  the general solution of the homogeneous equation 0Vx =  has the form 
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(3.3) is solvable in X  if and only if the additional conditions
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This means that ( ) dimcoker .V V m qβ ≡ = −  Thus, ( ) ( ) 0,indV V Vα β≡ − =  i.e., 
the operator :V X Y→  fredholms. 

Next, let us discuss the properties of the integrodifferential operator K  . By 
virtue of relations (3.1), (3.2), (2.19), (2.22) and (2.20) we have 
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Before proceeding to the evaluation of the image (3.6) of the operator K  we 

assume the following notations: 
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Consequently, the operator K  acts from X  toY  in a restricted manner, whereby 
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Further, let { }L x X≡ ⊂  be an arbitrary bounded set. Reasoning analogously 
to the case of integral equations of the third kind (see [5, p.52, 53]), using Lemma 
2.6 it is easy to show that the set ( )M K L≡  is relatively compact inY  . In other 
words, the operator :K X Y→  is quite continuous. Then the statement of Theorem 
1 follows directly from the fact that the perturbation of a nonetherian operator by a 
completely continuous operator preserves nonetherianism and does not change its 
index. 

 
4. CONTINUOUS REVERSIBILITY OF THE INTEGRODIFFERENTIAL 

OPERATOR 
Consider the IMU (3.1) in which the kernels jK  are subject to conditions 

(3.2), ,y Y∈  and x X∈  is the desired generalized function of the form (2.19). 
Taking into account relations (2.19), (3.4) - (3.6), we transform equation (3.1) to 
the form  
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Proof. By virtue of expression (2.3) it is obvious that for any function g Y∈  
there is an equivalence: 

{ }0 0, (0) 0, , 1.kg Tg g k q m= ⇔ = = = −    (4.2) 
Then, taking in (4.2) ( ) ( ),

1, , ,qg Ax y Y x C y Yλ
−≡ − ∈ ∈ ∈  we see that the statement of 

the lemma is true. 
It follows from this lemma that equation (4.1) is equivalent to IMU  

1

0
( )( ) ( )( ) ( )( )

m q

i i
i

Bz t Ty t c Tf t
− −

=

= − ∑    (4.3) 

in the space ( ) ( ),
1

qC λ
−  and relations 

{ } ( ) { }
1 1

0 01

(0) ( ) ( ) (0) 0, , 1.
p m q

k j k
jk i i

j i
y s z s ds c f k q mϕ

− −

= =−

− − = = −∑ ∑∫  (4.4) 

Let us first study in detail the IMU of the form (4.3) with the operator : B  
( ) ( )

1

0 1

( )( ) ( ) ( , ) ( ) ( ),
p

q j
j

j
Bz t z t t s z s ds f tµ

= −

≡ + =∑ ∫   (4.5) 

in which ( ), 0, , .p
j t jT K j p f Cµ ≡ = ∈  We will use the substitution ( ) ( )( )q pz u t C≡ ∈  . 

By virtue of (2.4), (2.5) and the definition of the class ( )
1
qC−  we have 

( )
1 1, , 0, 1.j

q q jz J u z J u j q− − −= = = −    (4.6) 
Let us now study the operator 

( )
1

0 1

( , ) ( ) .
p

j
j

j
Mz t s z s dsµ

= −

≡∑ ∫  

Let us first consider the case p q<  . By changing the order of integration in the 
double integral, we find that  

( ) ( )( ) ( )
1

1 1

1 1

( ) 1 ! ( , ) ( )
s

q j
j

j
Mz t q j t s s u d dsµ ρ ρ ρ

− − −

− −

 
= − − − = 

 
∑ ∫ ∫  

( )( )
1 1

1 1

1

1 ! ( ) ( , )( ) .q j
j

j
q j u t s s ds d

ρ

ρ µ ρ ρ
− − −

−

 
= − − −  

 
∑ ∫ ∫  

Hence, in this case IMU (4.5) is equivalent to the following Fredholm equation of 
the second kind in space ( ) :pC  

1

1

( ) ( , ) ( ) ( ),pGu u t G t u d f tρ ρ ρ
−

≡ + =∫     (4.7) 

where 

( )( )
1 1

1

0
( , ) 1 ! ( , )( ) .

p
q j

p j
j

G t q j t s s ds
ρ

ρ µ ρ
−

− −

=

≡ − − −∑ ∫   (4.8) 

At p q≥  taking into account (4.8) we have 



( ) ( )
1 1

1
1 1

( )( ) ( , ) ( , ) ( )
p

j q
q j

j q
Mz t G t u d t s u s dsρ ρ ρ µ −

−
=− −

= + =∑∫ ∫  

( ) ( )
1 1 1

1
11 1 1

( , ) ( ) ( , ) ( ) .
p q

k
q q q k

k
G u d t u d t u dρ ρ µ ρ ρ ρ µ ρ ρ ρ

−

− +
=− − −

= ⋅ + +∑∫ ∫ ∫  (4.9) 

Next, let us introduce the nuclei into consideration: 
1( , ) ( , ) 0;

( , )
( , ), 1, .

q q
k

q k

G t t при k
g t

t если k p q

ρ µ ρ
ρ

µ ρ
−

+

+ =≡  = −
 

Then taking into account (4.9) IMU (4.5) takes the form 
( )

1

0 1

( ) ( , ) ( ) ( ),
p q

k
k

k
Lu u t g t u d f tρ ρ ρ

−

= −

≡ + =∑ ∫    (4.10) 

moreover ( ) ( ), .p
kg t C⋅ ∈  

Thus, at p q<  , substitution ( )qz u≡  equivalently leads IMU (4.3) to the 
equation of the second kind 

( ) ( )
1

0
( ) ( )( ) ( ).

m q

i i
i

Gu t Ty t c Tf t
− −

=

= − ∑    (4.11) 

Let 1ν = −  not be an eigenvalue of equation (4.11) (or the kernel pG  ) and R  
be the solving operator of this equation. Then the function                
 

                                                            
( ) ( )*( ) ( ) ( )i

i
u t RTy t RTf t≡ −∑  

is the only smooth solution of equation (4.11). Hence, 
( ) ( ) ( )* *

1 1 1( ) ( ) ( ) ( )q q i q i
i

z t J u t J RTy t c J RTf t− − −≡ = −∑  

is the only smooth solution of IMU (4.3), which will be the solution of the initial 
equation (4.1) if by virtue of (4.4) the constants{ }ic  satisfy the quadratic system of 
linear algebraic equations (SLAE) 

( ){ } ( ){ }
1

0
(0) (0), , 1,

m q
k k

i i
i

c Qf Qy k q m
− −

=

= = −∑   (4.12) 

where the operator 1qQ E KJ RT−≡ −  mapsY  toY  , and E  is a unit operator in .Y  
In the case p q≥  , taking into account (4.9) and (4.10), IMU (4.3) is 

equivalent to the Fredholm  equation of the II kind 

( ) ( )
1

0
( ) ( )( ) ( )

m q

i i
i

Lu t Ty t c Tf t
− −

=

= − ∑    (4.13) 

with the enabling operator . ( ) ( ): p pR C C→  
Thus, it's been proven 
Theorem 2. Let the following conditions be satisfied: 



a) kernels , 0,jK j p=  , satisfy the requirements (3.2), and the ;y Y∈  
b) the number 1ν = −  is not an eigenvalue of equation (4.11) at p q<  

(respectively, of equation (4.13) in the case of ); p q≥  
c) the determinant of SLAU (4.12) is different from zero (at p q≥  the role of 

the operator R  is played by R  ). 
Then for any right part y Y∈  the IMU (3.1) has a single generalized solution

*x X∈  , represented by the formula  

( ) ( ) { }
1 1

* * *
1 1

0 0
( ) ( ) ( ) ( 1) ( ),

m q m q
ii

q i q i i
i i

x t J STy t c J STf t c tδ
− − − −

− −
= =

= − + −∑ ∑  

where S R=  at , p q< S R=   in the case of p q≥  , and{ }*ic  is the only solution of 

SLAU of the form (4.12). 
Corollary 2. Under the conditions of Theorem 2, the integrodifferential 

operator :A X Y→  , defined by equality (3.1), is continuously reversible.  
 

5.GENERALIZED COLLOCATION METHOD (GCM) 
Let IMU (3.1) be given, in which the kernels , 0,jK j p=  , have properties 

(3.2), y Y∈  , and x X∈  is the desired element. We will look for its approximate 
solution in the form 

{ }( ) { }
1

0
; ( ) ( ),

m q
i

n n j n i n
i

x x t c z t c tλδ
− −

+ +
=

≡ ≡ + ∑    (5.1) 

1

( ) , , 2,3,... .
n

i
n i

i q
z t c t q p n

λ

λ
+ −

=

≡ ≡ + =∑   (5.2) 

The unknown parameters ( ) , , 1,n
j jc c j q n m p= = + + −  are found, according to 

OMK, from the quadratic SLAU( )n m p q+ + −  -th order: 

( )( ) ( )( )0, 1, , ( 1) 0, 0, 1,jp
n k nD T k n T j pρ ν ρ= = − = = −  

{ }(0) 0, , 1,i
n i q mρ = = −      (5.3) 

 
where ( ) ( ) ( )( )A

n n nt t Ax y tρ ρ≡ ≡ −  is the non-convexity of the approximate 
solution, and{ }k Iν ⊂  is a system of Chebyshev knots of genus I(or II) 

For the computational algorithm (3.1), (5.1) - (5.3) is true 
Theorem 3: Suppose that the homogeneous IMU 0Ax =  has only zero 

solution in X  (e.g., under the conditions of Theorem 2), and the functions
p

j t t jh D T K≡  (byt  ), , 0, ,p
ji jig D T j pψ≡ = 0, 1i m q= − −  and pD Ty  belong to the 

Dini-Lipschitz class. Then for all 0, ,n N n n∈ ≥  the SLAU (5.3) has a single 

solution{ }*
jc  and the sequence of approximate solutions { }( )* *;n n jx x t c≡  converges 



to the exact solution * 1x A y−=  of equation (3.1) by the norm of the space X  with 
rate  

 

( )
1

* * *
1 1 1

0 0
( ) (g ) ln ,

p m q
t p

n n n j n ji n
j i

x x x O E h E E D Ty n
− −

− − −
= =

    ∆ = − = + +   
    

∑ ∑  (5.4) 

where ( )lE f  is the best uniform approximation of the function f C∈  by algebraic 
polynomials of degree no higher thanl  , and ( )t

lE ⋅  denotes the functional ( )lE ⋅  
applied on the variable . t  

Proof. Obviously, the IMU (3.1) is represented as a linear operator equation 
{ } ( ) { }( ),( )

1, ;0 , , ;0 ,pqAx Vx Kx y x X D m y Y C m qλ
−≡ + = ∈ ≡ ∈ ≡  (5.5) 

in which the operator :A X Y→  is continuously reversible. 
Let us also write the system (5.1) - (5.3) in operator form. For this purpose, 

we construct the corresponding finite-dimensional subspaces. Namely, we denote 
by nX X⊂  the( )n m p q+ + −  -dimensional subspace of elements of the form 

(5.1), and by nY Y⊂  we take the class { } 11 n m pn m p i
q q

span t
+ + −+ + −Π ≡  . Then we 

introduce the linear operator :n n m p q nY Y+ + −Γ ≡ Γ →  according to the rule  

1( ; ) ( )( )p
n n m p q p ny y t UJ L D Ty t+ + − −Γ ≡ Γ ≡ +  

( )( ) { }
1 1

0

( 1)( 1) (0) ,
! !

m j ip m
j i

j i q

t t tTy y
j i

− −

= =

+
+ − +∑ ∑    (5.6) 

where { } 11
0 1 0

:
nn i

n nL C span t
−−

−→Π ≡Π ≡  is an interpolation operator Lagrangian 

over the system of nodes{ }1

n
kν  . Then the system (5.1) - (5.3) is equivalent to the 

following linear equation: 
, , .n n n n n n n n n nA x Vx Kx y x X y Y≡ + Γ = Γ ∈ Γ ∈    (5.7) 

It is not difficult to verify this by carrying out the corresponding reasoning given in 
the proof of Theorem 3 [8]. 

Thus, to prove Theorem 3, it is sufficient to establish the existence, 
singularity and convergence of solutions of equations (5.7). For this purpose, we 
need the approximating property of the operator . nΓ  

Lemma 5.1. For any function y Y∈  the following estimation is valid 

( )7 1 ln , 2,3,...p
n nY

y y d E D Ty n n−− Γ ≤ =    (5.8) 

(hereinafter ( )7,9id i =  are some constants whose values do not depend on the 

number ). n  
The fairness of this lemma follows easily from the representation (2.18), 

definitions (5.6), (2.17), and evaluation (see, e.g., [12, p.107]) 
( )7 1 ln , .n nC

f L f d E f n f C−− ≤ ∈  



Let us now discuss the "closeness" of the operators A  and nA  on the subspace

nX  . Using equations (3.1), (5.7) and the estimate (5.8), for an arbitrary element

n nx X∈  we find that 

( )7 1 ln .p
n n n n n n n nY Y

Ax A x Kx Kx d E D TKx n−− = −Γ ≤   (5.9) 

By virtue of (3.6) and (5.1) we have 
1

0 0
( )( ) ( )( ) ( 1) ( ).

p m q
i j

n n i n ji
j i

Kx t Kz t c tλψ
− −

+
+ +

= =

= + −∑ ∑  

Hence,  

( )
1

( )

0 1

( , ) ( ) 1 ( ).
p

i jp j
n j n i n ji

j j i
D TKx h t s z s ds c g tλ

+
+ +

= −

= + −∑ ∑∑∫   (5.10) 

In order to polynomialize the function p
nD TKx C∈  , we construct the 

following element: 

( ) ( )
1

( )
1 1 1

1

( ) ( , ) ( ) 1 ( ),i jj j ji
n n n n i n n

j j i
P x t h t s z s ds c g tλ

+
− − + + −

−

≡ + −∑ ∑∑∫  (5.11) 

where 1
j

nh −  and 1
ji

ng −  are polynomials of degree 1n −  of the best uniform 
approximation for jh  (by t  ) and jig  , respectively. According to the structure (5.11) 
it is clear that . 1 1n n nP x− −∈Π  

Based on expressions (5.10) and (5.11), evaluation (2.9), and definition 
(2.21), we successively derive the intermediate evaluation 

( )1 1
p p

n n n n n C
E D TKx D TKx P x− −≤ − ≡  

( ) ( )
1

( )
1 1

1

max ( , ) ( ) ( 1) ( )j j i j ji
j n n i n ji nt I j j i

h h t s z s ds c g g tλ
+

− + + −∈
−

≡ − + − − ≤∑ ∑∑∫  

( ) ( )1 12 ( )t
n n j i n n jiC

j j i
z E h c E gλ λ− + + −≤ + ≤∑ ∑∑  

( )1 1 1( )
2 ( )t

n n j n n jiX
j j i

d z E h x E g
λ − −≤ + ≤∑ ∑∑  

( )1 1 1 12 ( ) 2t
n n j n n jiX X

j j i
d x E h d x E g− −≤ + =∑ ∑∑  

8 1 1 8 1( ) (g ) , 2 .t
n j n ji n

j i
d E h E x d d− −

  
= + ≡    

∑ ∑    (5.12) 

From inequalities (5.9) and (5.12) follows the desired "closeness" estimate of the 
operators A  and : nA  

9 1 1( ) ( ) ln .
n

t
n n n j n jiX Y

j i
A A d E h E g nε − −→

  
≡ − ≤ +    

∑ ∑   (5.13) 

Then, based on the estimates (5.13) and (5.8) from Theorem 7 (see [12; Ch.1, §4]), 
we obtain the statement of Theorem 3 with error estimate (5.4).  



Corollary 3. If the functions jh  (by t  ), jig  and pD Ty  belong to the class

( )rH Sα  , then under the conditions of Theorem 3 the  is true  
( ) ( ]* ln , 1 , 0,1 ,r

nx O n n r Nα α− −∆ = + ∈ ∈  

where  

                 
( ) ( ){ }( )( ) ( ) : ; , 0 ,rr rH S f C I f S S constα

α ω≡ ∈ ∆ ≤ ∆ ≡ >
 

 and ( );fω ∆  is the modulus of continuity of the function f C∈  with step 
, 0 2.∆ < ∆ ≤  

 
6. CONCLUDING REMARKS 

Remark 1. According to the definition of norm in the space
( ) ( ) { },
1 ;0qX D mλ
−≡  it is easy to see that the convergence of the sequence *( )nx  of 

approximate solutions to the exact solution * 1x A y−=  in the metric X  implies the 
usual convergence in the space of generalized functions, i.e. weak convergence. 

Remark 2. When numerically solving operator equations Ax y=  , a natural 
question arises about the rate of convergence of the nonconvexity

* *( ) ( )( )n nt Ax y tρ ≡ −  of the method under study. One of the results in this direction 
follows easily from the main theorem 3, namely: if the initial data ,j jih g  and pD Ty  

of the equation (3.1) belong to the class (0 1, 0,1,2,...)rH rα α< ≤ =  , then 
under the conditions of Theorem 3 the estimate is valid * ( ln ).r

n Y
O n nαρ − −=  

Remark 3. At 0q =  the studied IMU (3.1) is an IMU of the third kind with 
the operator ( ) { } { } ( ),

0: ;0p m pA D m C→  , and the direct projection method (5.1) - 
(5.3) is a special variant of OMK for IMUs of the third kind. Consequently, 
Theorem 3 contains the known results [16] on the justification of a special variant 
of OMK for approximate solution of third-order equations in the class of 
generalized functions.  

Remark 4. Since, under the conditions of Theorem 3, the approximating 
operators nA  have the property of the 1 1

1(1), : , ,n n n nA O A Y X n n− −= → ≥  

it is obvious (see [12; Ch.1, §5]) that the direct method for the IMU (3.1) proposed 
in this paper is stable with respect to small perturbations of the initial data. This 
allows us to find a numerical solution of the studied equations on a computer with 
any predetermined degree of accuracy. Moreover, if the IMU (3.1) is well-
conditioned, then the SLAE (5.3) is also well-conditioned. 
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