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1. ВВЕДЕНИЕ

Данная работа посвящена приближенному решению линейного интегродифференциального уравнения
(ИДУ)

(Ax) (t) ≡ x(q)(t)
l∏︁

j=1

(t − t j)m j +

p∑︁
j=0

1∫︁
−1

K j(t, s)x( j)(s)ds = y(t), (1.1)

в котором t ∈ I ≡ [−1, 1], числа t j ∈ (−1, 1), m j ∈ N, j = 1, l, и q, p ∈ Z+ являются фиксированными; K j, j = 0, p и y –
известные “гладкие” функции, а x – искомая функция. Исследование таких уравнений представляет несомнен-
ный интерес как с точки зрения теории (в частности, ИДУ (1.1) является обобщением ряда классов линейных
интегральных уравнений типа Фредгольма), так и приложений. Очевидно, что задача об отыскании решения
ИДУ (1.1) в классе обычных гладких функций является некорректно поставленной. Следовательно, важен во-
прос о построении основных пространств, обеспечивающих корректность данной задачи. При решении этого
вопроса вполне естественно учитывать то, что в случае q = p = 0 ИДУ (1.1) преобразуется в линейное инте-
гральное уравнение третьего рода (УТР) (т.е. в этом смысле эти уравнения являются “родственными”). Хоро-
шо известно, что УТР широко применяются в различных областях, в частности, они встречаются в ряде задач
теорий переноса нейтронов, упругости, рассеяния частиц (см., например, [1; 2, с. 121–129] и приведенную в
них библиографию), в теории уравнений с частными производными смешанного типа [3], а также в теории
сингулярных интегральных уравнений с вырождающимся символом [4]. При этом, как правило, естествен-
ными классами решений УТР являются специальные пространства обобщенных функций типа D или V. Под
D (соответственно V) понимается пространство обобщенных функций, построенных при помощи функцио-
нала “дельта-функция Дирака” (соответственно функционала “конечная часть интеграла по Адамару”). По-
дробный обзор полученных результатов и обширную библиографию по УТР можно найти в монографии [5,
с. 3–11, 168–173] и в диссертации [6, с. 3–6, 106–114]. На основе упомянутой выше связи между ИДУ (1.1) и
УТР соответствующие идеи и результаты для УТР можно успешно использовать для корректной постановки за-
дачи решения уравнения (1.1), разработки и теоретического обоснования приближенных методов его решения
в пространствах обобщенных функций.

ИДУ (1.1) при l = 1, t1 = 0, p = 0 исследовано в работе [7, с. 25–43], в которой с использованием известных
результатов по УТР построена теория Нётера для такого уравнения в классах гладких и обобщенных функций
типа D. В статье [8] разработана полная теория разрешимости общего ИДУ вида (1.1) при p = 0 в некотором
пространстве типа D обобщенных функций. Следует отметить, что исследуемые ИДУ точно решаются лишь
в очень редких частных случаях. Поэтому особенно актуальна разработка эффективных методов их прибли-
женного решения в пространствах обобщенных функций с соответствующим теоретическим обоснованием.
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Определенные результаты в этом направлении получены для ИДУ (1.1) при p = 0. Именно, в работах [8–11]
предложены и обоснованы прямые проекционные методы его приближенного решения, основанные на при-
менении стандартных и некоторых специальных полиномов, а также сплайнов первого и второго порядков.

В настоящей статье впервые построена полная теория разрешимости ИДУ (1.1) в некотором пространстве
типа D обобщенных функций (фредгольмовость уравнения, условия разрешимости, алгоритм отыскания точ-
ного решения, достаточные условия непрерывной обратимости оператора A). Более того, разработан полино-
миальный прямой проекционный метод, специально приспособленный к приближенному решению ИДУ (1.1)
в классе обобщенных функций, и дано его обоснование в смысле [12; гл. 1, §1–5]. Именно, доказана теорема
существования и единственности решения соответствующего приближенного уравнения, установлены оцен-
ки погрешности этого решения и доказана сходимость последовательности приближенных решений к точному
решению в пространстве обобщенных функций. Исследованы также вопросы устойчивости и обусловленности
аппроксимирующих уравнений.

2. ПРОСТРАНСТВА ОСНОВНЫХ И ОБОБЩЕННЫХ ФУНКЦИЙ

Пусть C ≡ C(I) – банахово пространство всех непрерывных на I функций с обычной max-нормой и m ∈ N.
Обозначим через C {m; 0} ≡ C{m}0 (I) множество всех функций f ∈ C, имеющих в точке t = 0 тейлоровскую про-
изводную f {m}(0) порядка m (см., например, [13]). Назовем его классом точечно-гладких функций (естественно
считаем, что C {0; 0} ≡ C). Векторное пространство C {m; 0} снабдим нормой

‖ f ‖{m} ≡ ‖T f ‖C +
m−1∑︁
i=0

⃒⃒
f {i}(0)

⃒⃒
, (2.1)

где T : C {m; 0} → C – “характеристический” оператор класса C {m; 0}, определяемый следующим образом:

T f ≡ (T m f )(t) ≡

[︃
f (t) −

m−1∑︁
i=0

f {i}(0)ti⧸︀i!

]︃
t−m ≡ F(t) ∈ C, F(0) ≡ lim

t→0
F(t). (2.2)

Справедлива (см., например, [5, с. 12,14])
Лемма 2.1. i. Включение f ∈ C {m; 0} эквивалентно выражению

f (t) = tmF(t) +
m−1∑︁
i=0

αiti, (2.3)

причем T f = F ∈ C с точностью до устранимого разрыва в точке t = 0, а f {i}(0) = αii!, i = 0,m − 1.
ii. Пространство C {m; 0} по норме (2.1) полно и нормально вложено в пространство C.
Далее, введем следующий класс “точечно-гладких” функций:

C {m, q; 0} ≡
{︀

f ∈ C {m; 0} : f {i}(0) = 0, i = 0, q − 1, q ∈ Z+, q < m
}︀
.

Следовательно, с учетом (2.1)–(2.3) (в них имеем i = q,m − 1) по норме (2.1) пространство C {m, q; 0} полно и
нормально вложено в C.

Обозначим через C(q) ≡ C(q)(I) векторное пространство q раз непрерывно дифференцируемых на I функций.
В силу формулы Тейлора с интегральным остатком ясно, что функция f принадлежит классу C(q) тогда и только
тогда, когда она имеет вид

f (t) = (JF) (t) +
q−1∑︁
j=0

b j(t + 1) j, (2.4)

где

JF ≡
(︀

Jq−1F
)︀

(t) ≡ ((q − 1)!)−1

t∫︁
−1

(t − s)q−1F(s)ds, (2.5)

причем Dq f ≡ f (q)(t) = F(t) ∈ C, f ( j)(−1) = b j j!, j = 0, q − 1; при этом J : C → C(q), (JF)( j) = Jq−1− jF, j = 0, q − 1,
DqJF = F.

В векторном пространстве C(q) определим специальную норму

‖ f ‖(q) ≡ ‖D
q f ‖C +

q−1∑︁
j=0

⃒⃒
f ( j)(−1)

⃒⃒
, f ∈ C(q). (2.6)
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Из соотношений (2.4), (2.6) и оценки интеграла (2.5) по max-норме легко следует
Лемма 2.2. Пространство C(q) с нормой (2.6) полно и вложено в пространство C.
Следствие 1. Обычная норма || · ||C(q) в C(q) и (2.6) эквивалентны, т.е. существует постоянная d0 ⩾ 1 такая, что

‖ f ‖(q) ⩽ ‖ f ‖C(q) ⩽ d0‖ f ‖(q), ‖ f ‖C(q) ≡

q∑︁
i=0

⃦⃦
f (i)
⃦⃦

C , f ∈ C(q).

Пусть C(q)
−1 ≡ C(q)

−1(I) ≡
{︀

f ∈ C(q) : f (i)(−1) = 0, i = 0, q − 1
}︀

– банахово пространство гладких функций с нор-
мой ‖ f ‖(q) ≡ ‖Dq f ‖C .

В дальнейших исследованиях нам понадобится еще один класс гладких функций:

C(λ),(q)
−1 ≡ C(λ),(q)

−1 (I) ≡ C(λ) ∩C(q)
−1 , λ ≡ q + p.

В силу (2.4) очевидно, что включение f ∈ C(λ),(q)
−1 равносильно представлению

f (t) =
(︀

Jλ−1 f (λ))︀ (t) +
λ−1∑︁
k=q

f (k)(−1)(t + 1)k⧸︀k!. (2.7)

Следовательно, на основании леммы 2.2 очевидно, что по норме

‖ f ‖(λ) ≡
⃦⃦

Dλ f
⃦⃦

C +

λ−1∑︁
k=q

⃒⃒
f (k)(−1)

⃒⃒
(2.8)

пространство C(λ),(q)
−1 полно и вложено в C. Поэтому обычная норма в C(λ) и (2.8) эквивалентны:

‖ f ‖(λ) ⩽ ‖ f ‖C(λ) ⩽ d1‖ f ‖(λ), f ∈ C(λ),(q)
−1 , d1 ⩾ 1. (2.9)

Лемма 2.3. Для любой функции f ∈ C(λ),(q)
−1 справедливо равенство⃦⃦

f (q)
⃦⃦

(p) = ‖ f ‖(λ). (2.10)

Доказательство. В силу (2.7) имеем

f (q)(t) =
(︀

Jλ−1−q f (λ))︀ (t) +

⎡⎣ λ−1∑︁
k=q

f (k)(−1)(t + 1)k⧸︀k!

⎤⎦(q)

=
(︀

Jp−1 f (λ))︀ (t) +
p−1∑︁
j=0

f (q+ j)(−1)(t + 1) j⧸︀ j!,

откуда в силу (2.4)–(2.6) и (2.8) находим

⃦⃦
f (q)
⃦⃦

(p) =
⃦⃦

Dp f (q)
⃦⃦

C +

p−1∑︁
j=0

⃒⃒
f (q+ j)(−1)

⃒⃒
≡ ‖ f ‖(λ),

что и требовалось.
В дальнейшем при исследовании регулярного интегродифференциального оператора понадобится одно

важное свойство “точечно-гладких” функций. В этой связи введем в рассмотрение следующий класс “гладких”
функций:

C{n},(r)
0 ≡ C{n},(r)

0 (I) ≡
{︀
φ ∈ C {n; 0} : T n

φ ∈ C(r), r = 0, 1, 2, . . .
}︀
,

где T n – “характеристический” оператор класса C {n; 0}, определенный согласно правилу (2.2). Будем исполь-
зовать семейство

Y j ≡ C{m−q−1+ j},( j)
0 , j = 0, p, q < m,

где m, q и p – фиксированные параметры, фигурирующие в ИДУ (1.1) при l = 1.
Лемма 2.4. Для любой функции φ ∈ Y j, j = 0, p имеет место равенство(︀

φ
( j))︀{k}(0) = φ{k+ j}(0), j = 0, p, k = 0,m − q − 1. (2.11)
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Доказательство. При j = 0 свойство очевидно. В силу структуры (2.3) “точечно-гладкой” функции имеем

φ(t) = tm−q−1+ j · Φ j(t) +
m−q−2+ j∑︁

k=0

aktk, (2.12)

где
Φ j ≡ T m−q−1+ j

φ ∈ C( j), φ
{k}(0) = akk!, k = 0,m − q − 2 + j, j = 1, p.

Дифференцируя (2.12) последовательно j раз с применением обычной формулы Лейбница, легко получим
следующее представление:

φ
( j)(t) = tm−q−1 (︀T m−q−1

φ
( j))︀ (t) +

m−q−2∑︁
k=0

τk, jak+ jtk = tm−q−1 [︀
τm−q−1, jΦ j(t) + g j(t)

]︀
+

m−q−2∑︁
k=0

τk, jak+ jtk, (2.13)

в котором g j определенным образом выражается черезΦ j, причем g j(t) = o(1) при t → 0, а τk, j ≡
j∏︀

l=1
(k + l), j = 1, p,

τk,0 ≡ 1.
Согласно (2.13), (2.3), (2.12) и определению тейлоровской производной (см., например, [5, с. 12]) находим

производные соответствующих порядков:(︀
φ

( j))︀{k}(0) = τk, jak+ jk! = ak+ j (k + j)!, k = 0,m − q − 2; (2.14)(︀
φ

( j))︀{m−q−1}
(0) ≡ (m − q − 1)! lim

t→0

(︀
T m−q−1

φ
( j))︀ (t) = (m − q − 1)!τm−q−1, j lim

t→0
Φ j (t) =

= (m − q − 1 + j)! lim
t→0
Φ j (t) ≡ φ{m−q−1+ j}(0), j = 1, p.

(2.15)

С другой стороны, в силу (2.12) и (2.3) имеем

φ
{k+ j}(0) = ak+ j (k + j)!, k = 0,m − q − 2, j = 1, p. (2.16)

Из (2.14)–(2.16) следует (2.11), что и требовалось.
Построим теперь основное в наших исследованиях пространство:

Y ≡ C(p)
{m, q; 0} ≡

{︀
y ∈ C {m, q; 0} : Ty ≡ T my ∈ C(p)}︀ .

Зададим в нем норму

‖y‖Y ≡ ‖Ty‖(p) +

m−1∑︁
i=q

⃒⃒
y{i}(0)

⃒⃒
, y ∈ Y. (2.17)

Лемма 2.5 (см. [14]). i. Включение φ ∈ Y равносильно представлению

φ(t) =
(︀
UJp−1Φ

)︀
(t) + tm

p−1∑︁
j=0

α j(t + 1) j +

m−1∑︁
i=q

βiti, (2.18)

причем DpTφ = Φ ∈ C,
(︀
Tφ
)︀( j)(−1) = α j j!, j = 0, p − 1, φ{i} (0) = βii!, i = q,m − 1; U f ≡ tm f (t), оператор Jp−1

определен согласно (2.5).
ii. Пространство Y относительно нормы (2.17) полно и вложено в пространство C {m, q; 0}.
Критерий компактности множеств в пространстве Y устанавливает
Лемма 2.6 (см. [14]). Множество M ⊂ Y относительно компактно в Y тогда и только тогда, когда: (i) M огра-

ничено; (ii) семейство DpT (M)непрерывных на I функций равностепенно непрерывно.
Далее над пространством Y основных функций построим семейство X ≡ D(λ),(q)

−1 {m; 0} обобщенных функций x(t)
вида

x(t) ≡ z(t) +
m−q−1∑︁

i=0

γiδ
{i}(t), (2.19)

где t ∈ I, z ∈ C(λ),(q)
−1 , λ ≡ q + p, γi ∈ R – произвольные постоянные, а δ и δ{i} – соответственно дельта-функция

Дирака и ее “тейлоровские” производные, действующие на пространстве Y основных функций согласно следующему
правилу: (︀

δ
{i}, y
)︀
≡

1∫︁
−1

δ
{i} (t) y(t)dt ≡ (−1)iy{i}(0), i = 0,m − q − 1. (2.20)
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Очевидно, что векторное пространство X является банаховым относительно нормы

‖x‖X ≡ ‖z‖(λ) +

m−q−1∑︁
i=0

⃒⃒
γi
⃒⃒
. (2.21)

В заключение этого раздела приведем нужное в дальнейшем свойство о “смешанных” производных дельта-
функции.

Лемма 2.7. На пространстве Y j основных функций справедливо равенство(︀
δ
{i} (t)

)︀( j)
= δ{i+ j} (t) , j = 0, p, i = 0,m − q − 1. (2.22)

Доказательство. Заметим, что (см., например, [15, с. 419]) для любой функции φ ∈ Y j имеет место соотно-
шение (︁(︀

δ
{i})︀( j)
,φ
)︁
≡ (−1) j (︀

δ
{i},φ( j))︀ ≡ (−1) j+i(︀

φ
( j))︀{i}(0), j = 0, p, i = 0,m − q − 1. (2.23)

С другой стороны, в силу (2.20) имеем(︀
δ
{i+ j},φ

)︀
≡ (−1)i+ j

φ
{i+ j}(0), j = 0, p, i = 0,m − q − 1. (2.24)

Следовательно, из (2.23), (2.24) и (2.11) следует требуемое равенство (2.22).

3. ФРЕДГОЛЬМОВОСТЬ ИССЛЕДУЕМЫХ ИДУ

Пусть задано ИДУ (1.1). Ради сокращения громоздких выкладок и упрощения формулировок, не ограни-
чивая при этом общности идей, методов и результатов, всюду в дальнейшем будем считать l = 1, t1 = 0, т.е.
рассмотрим ИДУ вида

(Ax) (t) ≡ (V x) (t) + (Kx) (t) = y(t), t ∈ I, (3.1)

V ≡ UDq,Dq f ≡ f (q)(t),Ug ≡ tmg(t),Kx ≡
p∑︁

j=0

1∫︁
−1

K j(t, s)x( j)(s)ds,

где q, p ∈ Z+, m ∈ N, q < m; y ∈ Y ≡ C(p) {m, q; 0}, K j – известные ядра, обладающие следующими свойствами:

K j(t, ·) ∈ Y, K j(·, s) ∈ Y j, φ jk(s) ≡
(︀
K j
)︀{k}

t (0, s) ∈ C,

ψ ji(t) ≡
(︀
K j
)︀{i+ j}

s (t, 0) ∈ Y, j = 0, p, k = q,m − 1, i = 0,m − q − 1;
(3.2)

а x ∈ X – искомый элемент.
Теорема 1. В условиях (3.2) оператор A : X → Y фредгольмов.
Доказательство. Предварительно изучим уравнение

V x ≡ tmx(q)(t) = y(t), y ∈ Y. (3.3)

Покажем, что оператор V : X → Y ограничен. В силу (2.19) и (3.3) имеем

(Dqx) (t) = (Dqz) (t) +
m−q−1∑︁

i=0

γiδ
{i+q}(t) = (Dqz) (t) +

m−1∑︁
k=q

γk−qδ
{k}(t). (3.4)

Тогда, учитывая свойство(︀
tm · δ{k}(t),φ(t)

)︀
≡
(︀
δ
{k}, tm

φ(t)
)︀
≡ (−1)k(︀tm · φ

)︀{k}(0) = 0, k = 0,m − 1, φ ∈ C, (3.5)

получаем V x ≡ UDqx = UDqz, откуда на основании соотношений (2.17), (2.18), (2.21) и (2.10) следует, что

‖V x‖Y = ‖UDqz‖Y ≡ ‖TUDqz‖(p) = ‖D
qz‖(p) = ‖z‖(λ) ⩽ ‖x‖X ,

т.е. ‖V‖ ≡ ‖V‖X→Y ⩽ 1.
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Теперь в пространстве X ≡ D(λ),(q)
−1 {m; 0} найдем решение уравнения (3.3) и индекс оператора V. Из равенств

(3.4) и (3.5) вытекает, что в пространстве X общее решение однородного уравнения V x = 0 имеет вид

x̃(t) ≡
m−q−1∑︁

i=0

γiδ
{i}(t), γi ∈ R;

следовательно, α (V) ≡ dim ker V = m − q. С другой стороны, неоднородное уравнение (3.3) разрешимо в X тогда
и только тогда, когда выполнены дополнительные условия

(︀
δ{i}(t), y

)︀
= 0, i = q,m − 1. При их выполнении общее

решение уравнения (3.3) представляется формулой

x*(t) =
(︀

Jq−1Ty
)︀

(t) +
m−q−1∑︁

i=0

γiδ
{i}(t), γi ∈ R.

Это означает, что β(V) ≡ dim co ker V = m − q. Таким образом, indV ≡ α(V) − β(V) = 0, т.е. оператор V : X → Y
фредгольмов.

Далее обсудим свойства интегродифференциального оператора K. В силу соотношений (3.1), (3.2), (2.19),
(2.22) и (2.20) имеем

(Kx)(t) = (Kz)(t) +
p∑︁

j=0

m−q−1∑︁
i=0

(−1)i+ j
γiψ ji(t). (3.6)

Отсюда с учетом условий (3.2) видим, что Kx ∈ Y, x ∈ X.
Прежде чем перейти к оценке образа (3.6) оператора K примем следующие обозначения:

d2 ≡ max
j=0,p

⃦⃦
Dp

t TtK j
⃦⃦

C , d3 ≡ max
j=0,p

p−1∑︁
l=0

⃦⃦⃦(︀
TtK j

)︀(l)
t (−1, s)

⃦⃦⃦
C
, d4 ≡ max

j=0,p

m−1∑︁
k=q

⃦⃦
φ jk
⃦⃦

C , d5 ≡ max
i=0,m−q−1

p∑︁
j=0

⃦⃦
ψ ji
⃦⃦

Y .

Тогда, используя определение (2.17), оценку (2.9) и определение (2.21), последовательно находим, что

‖Kx‖Y ⩽ ‖Kz‖Y +
p∑︁

j=0

m−q−1∑︁
i=0

⃒⃒
γi
⃒⃒⃦⃦
ψ ji
⃦⃦

Y ≡

⃦⃦⃦⃦
⃦⃦∑︁

j

1∫︁
−1

(︀
Dp

t TtK j
)︀

(t, s)z( j)(s)ds

⃦⃦⃦⃦
⃦⃦

C

+

p−1∑︁
l=0

⃒⃒⃒⃒
⃒⃒∑︁

j

1∫︁
−1

(︀
TtK j

)︀(l)
t (−1, s)z( j)(s)ds

⃒⃒⃒⃒
⃒⃒+

+

m−1∑︁
k=q

⃒⃒⃒⃒
⃒⃒∑︁

j

1∫︁
−1

φ jk(s)z( j)(s)ds

⃒⃒⃒⃒
⃒⃒+∑︁

j

∑︁
i

⃒⃒
γi
⃒⃒⃦⃦
ψ ji
⃦⃦

Y ⩽ 2d2d1‖z‖(λ) + 2d3d1‖z‖(λ) + 2d4d1‖z‖(λ) + d5

∑︁
i

⃒⃒
γi
⃒⃒
⩽ d6‖x‖X ,

d6 ≡ 2d1 (d2 + d3 + d4) + d5.

Следовательно, оператор K действует из X в Y ограниченно, причем ‖K‖ ≡ ‖K‖X→Y ⩽ d6.

Далее, пусть L ≡ {x} ⊂ X – произвольное ограниченное множество. Рассуждая аналогично случаю интеграль-
ных уравнений третьего рода (см. [5, с. 52, 53]), с использованием леммы 2.6 несложно показать, что множество
M ≡ K(L) относительно компактно в Y. Другими словами, оператор K : X → Y вполне непрерывен. Тогда утвер-
ждение теоремы 1 непосредственно следует из того, что возмущение нётерова оператора вполне непрерывным
оператором сохраняет нётеровость и не изменяет его индекса.

4. НЕПРЕРЫВНАЯ ОБРАТИМОСТЬ ИНТЕГРОДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА

Рассмотрим ИДУ (3.1), в котором ядра K j подчинены условиям (3.2), y ∈ Y, а x ∈ X – искомая обобщенная
функция вида (2.19). С учетом соотношений (2.19), (3.4)–(3.6) преобразуем уравнение (3.1) к виду

(Az) (t) = y(t) −
m−q−1∑︁

i=0

ci fi(t), (4.1)

где fi(t) ≡
p∑︀

j=0
(−1) j

ψ ji(t), ci ≡ (−1)i
γi, i = 0,m − q − 1. Наша задача заключается в нахождении функции z ∈ C(λ),(q)

−1 и

произвольных постоянных ci.
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Лемма 4.1. Пусть выполнены следующие требования:

K j(t, ·) ∈ Y, φ jk(s) ≡
(︀
K j
)︀{k}

t (0, s) ∈ C, y ∈ Y, j = 0, p, k = q,m − 1.

Тогда ИДУ (3.1)
(︁

A : C(λ),(q)
−1 → Y

)︁
эквивалентно в пространстве C(λ),(q)

−1 ИДУ

Bx ≡ (Dqx) (t) +
p∑︁

j=0

1∫︁
−1

(︀
TtK j

)︀
(t, s) x( j)(s)ds = (Ty)(t)

и соотношениям
p∑︁

j=0

1∫︁
−1

φ jk(s)x( j)(s)ds = y{k}(0), k = q,m − 1.

Доказательство. В силу выражения (2.3) очевидно, что для любой функции g ∈ Y имеет место эквивалент-
ность:

g = 0⇔ Tg = 0, g{k}(0) = 0, k = q,m − 1. (4.2)

Тогда, взяв в (4.2) g ≡ Ax − y ∈ Y, x ∈ C(λ),(q)
−1 , y ∈ Y, убеждаемся в справедливости утверждения леммы.

Из этой леммы следует, что уравнение (4.1) равносильно ИДУ

(Bz)(t) = (Ty)(t) −
m−q−1∑︁

i=0

ci(T fi)(t) (4.3)

в пространстве C(λ),(q)
−1 и соотношениям

y{k}(0) −
p∑︁

j=0

1∫︁
−1

φ jk(s)z( j)(s)ds −
m−q−1∑︁

i=0

ci f {k}i (0) = 0, k = q,m − 1. (4.4)

Предварительно подробно изучим ИДУ вида (4.3) с оператором B:

(Bz)(t) ≡ z(q)(t) +
p∑︁

j=0

1∫︁
−1

µ j(t, s)z( j)(s)ds = f (t), (4.5)

в котором µ j ≡ TtK j, j = 0, p, f ∈ C(p). Будем использовать подстановку z(q) ≡ u(t) ∈ C(p). В силу (2.4), (2.5) и
определения класса C(q)

−1 имеем
z = Jq−1u, z( j) = Jq−1− ju, j = 0, q − 1. (4.6)

Займемся теперь исследованием оператора

Mz ≡
p∑︁

j=0

1∫︁
−1

µ j(t, s)z( j)(s)ds.

Рассмотрим сначала случай p < q. Изменяя порядок интегрирования в двойном интеграле, находим, что

(Mz) (t) =
∑︁

j

((q − 1 − j)!)−1

1∫︁
−1

µ j(t, s)

⎛⎝ s∫︁
−1

(︀
s − ρ

)︀q−1− ju(ρ)dρ

⎞⎠ ds =

=
∑︁

j

((q − 1 − j)!)−1

1∫︁
−1

u(ρ)

⎛⎝ 1∫︁
ρ

µ j(t, s)(s − ρ)q−1− jds

⎞⎠dρ.

Следовательно, в этом случае ИДУ (4.5) эквивалентно следующему уравнению Фредгольма второго рода в про-
странстве C(p) :

Gu ≡ u(t) +

1∫︁
−1

Gp(t, ρ)u(ρ)dρ = f (t), (4.7)
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где

Gp(t, ρ) ≡
p∑︁

j=0

((q − 1 − j)!)−1

1∫︁
ρ

µ j(t, s)(s − ρ)q−1− jds. (4.8)

При p ⩾ q с учетом (4.8) имеем

(Mz)(t) =

1∫︁
−1

Gq−1(t, ρ)u
(︀
ρ
)︀
dρ +

p∑︁
j=q

1∫︁
−1

µ j(t, s)u( j−q)(s)ds =

=

1∫︁
−1

Gq−1 · u
(︀
ρ
)︀
dρ +

1∫︁
−1

µq(t, ρ)u(ρ)dρ+
p−q∑︁
k=1

1∫︁
−1

µq+k(t, ρ)u(k)(ρ)dρ.

(4.9)

Далее введем в рассмотрение ядра:

gk(t, ρ) ≡

{︃
Gq−1(t, ρ) + µq(t, ρ) при k = 0;
µq+k(t, ρ), если k = 1, p − q.

Тогда с учетом (4.9) ИДУ (4.5) принимает вид

Lu ≡ u(t) +
p−q∑︁
k=0

1∫︁
−1

gk(t, ρ)u(k)(ρ)dρ = f (t), (4.10)

причем gk (t, ·) ∈ C(p).
Итак, при p < q подстановка z(q) ≡ u равносильным образом приводит ИДУ (4.3) к уравнению второго рода

(Gu) (t) = (Ty)(t) −
m−q−1∑︁

i=0

ci (T fi)(t). (4.11)

Пусть ν = −1 не является собственным значением уравнения (4.11) (или ядра Gp) и R – разрешающий опе-
ратор этого уравнения. Тогда функция

u*(t) ≡ (RTy) (t) −
∑︁

i

ci(RT fi) (t)

является единственным гладким решением уравнения (4.11). Следовательно,

z*(t) ≡
(︀

Jq−1u*
)︀

(t) =
(︀

Jq−1RTy
)︀

(t) −
∑︁

i

ci
(︀

Jq−1RT fi
)︀

(t)

есть единственное гладкое решение ИДУ (4.3), которое будет решением и исходного уравнения (4.1), если в
силу (4.4) постоянные {ci} удовлетворяют квадратной системе линейных алгебраических уравнений (СЛАУ)

m−q−1∑︁
i=0

ci(Q fi){k}(0) = (Qy){k}(0), k = q,m − 1, (4.12)

где оператор Q ≡ E − KJq−1RT отображает Y в Y, а E – единичный оператор в Y.
В случае p ⩾ q, с учетом (4.9) и (4.10), ИДУ (4.3) эквивалентно уравнению Фредгольма II рода

(Lu) (t) = (Ty)(t) −
m−q−1∑︁

i=0

ci (T fi)(t) (4.13)

с разрешающим оператором R̃ : C(p) → C(p).
Таким образом, доказана
Теорема 2. Пусть выполнены следующие условия:
а) ядра K j, j = 0, p, удовлетворяют требованиям (3.2), а функция y ∈ Y;
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б) число ν = −1 не является собственным значением уравнения (4.11) при p < q (соответственно, уравнения
(4.13) в случае p ⩾ q);

в) определитель СЛАУ (4.12) отличен от нуля (при p ⩾ q роль оператора R играет R̃).
Тогда для любой правой части y ∈ Y ИДУ (3.1) имеет единственное обобщенное решение x* ∈ X, представ-

ляемое формулой

x*(t) =
(︀

Jq−1S Ty
)︀

(t) −
m−q−1∑︁

i=0

c*i
(︀

Jq−1S T fi
)︀

(t) +
m−q−1∑︁

i=0

(−1)ic*i δ
{i}(t),

где S = R при p < q, S = R̃ в случае p ⩾ q, а
{︀

c*i
}︀

– единственное решение СЛАУ вида (4.12).
Следствие 2. В условиях теоремы 2 интегродифференциальный оператор A : X → Y, определенный равен-

ством (3.1), непрерывно обратим.

5. ОБОБЩЕННЫЙ МЕТОД КОЛЛОКАЦИИ (ОМК)

Пусть задано ИДУ (3.1), в котором ядра K j, j = 0, p, обладают свойствами (3.2), y ∈ Y, а x ∈ X – искомый
элемент. Его приближенное решение будем искать в виде

xn ≡ xn
(︀
t;
{︀

c j
}︀)︀
≡ zn(t) +

m−q−1∑︁
i=0

ci+n+λδ
{i}(t), (5.1)

zn(t) ≡
n+λ−1∑︁

i=q

citi, λ ≡ q + p, n = 2, 3, . . . . (5.2)

Неизвестные параметры c j = c(n)
j , j = q, n + m + p − 1, найдем, согласно ОМК, из квадратной СЛАУ (n+m+ p−q)-

го порядка: (︀
DpTρn

)︀
(νk) = 0, k = 1, n,

(︀
Tρn

)︀( j)(−1) = 0, j = 0, p − 1, ρ
{i}
n (0) = 0, i = q,m − 1, (5.3)

где ρn(t) ≡ ρA
n (t) ≡ (Axn − y)(t) – невязка приближенного решения, а {νk} ⊂ I – система узлов Чебышёва I (или II)

рода.
Для вычислительного алгоритма (3.1), (5.1)–(5.3) справедлива
Теорема 3. Пусть однородное ИДУ Ax = 0 имеет в X лишь нулевое решение (например, в условиях теоремы 2), а

функции h j ≡ Dp
t TtK j (по t), g ji ≡ DpTψ ji, j = 0, p, i = 0,m − q − 1, и DpTy принадлежат классу Дини–Липшица.

Тогда при всех n ∈ N, n ⩾ n0, СЛАУ (5.3) обладает единственным решением
{︀

c*j
}︀

и последовательность приближен-
ных решений x*n ≡ xn

(︀
t;
{︀

c*j
}︀)︀

сходится к точному решению x* = A−1y уравнения (3.1) по норме пространства X со
скоростью

∆x*n =
⃦⃦

x*n − x*
⃦⃦
= O

⎧⎨⎩
⎡⎣ p∑︁

j=0

(︃
Et

n−1(h j) +
m−q−1∑︁

i=0

En−1(g ji)

)︃
+ En−1 (DpTy)

⎤⎦ ln n

⎫⎬⎭ , (5.4)

где El( f ) – наилучшее равномерное приближение функции f ∈ C алгебраическими полиномами степени не выше l, а
через Et

l(·) обозначен функционал El(·), примененный по переменной t.
Доказательство. Очевидно, что ИДУ (3.1) представляется в виде линейного операторного уравнения

Ax ≡ V x + Kx = y, x ∈ X ≡ D(λ),(q)
−1 {m; 0} , y ∈ Y ≡ C(p)

{m, q; 0} , (5.5)

в котором оператор A : X → Y непрерывно обратим. Систему (5.1)–(5.3) запишем также в операторной форме.
С этой целью построим соответствующие конечномерные подпространства. Именно, через Xn ⊂ X обозначим

(n+m+p−q) – мерное подпространство элементов вида (5.1), а за Yn ⊂ Y примем классΠn+m+p−1
q ≡ span

{︀
ti
}︀n+m+p−1

q .
Далее введем линейный оператор Γn ≡ Γn+m+p−q : Y → Yn согласно правилу

Γny ≡ Γn+m+p−q(y; t) ≡ (UJp−1LnDpTy)(t) +
p−1∑︁
j=0

(Ty)( j)(−1)
tm(t + 1) j

j!
+

m−1∑︁
i=q

y{i}(0)
ti

i!
, (5.6)

где Ln : C → Πn−1
0 ≡ Πn−1 ≡ span

{︀
ti
}︀n−1

0 представляет собой интерполяционный оператор Лагранжа по системе
узлов {νk}

n
1. Тогда система (5.1)–(5.3) эквивалентна следующему линейному уравнению:

Anxn ≡ V xn + ΓnKxn = Γny, xn ∈ Xn,Γny ∈ Yn. (5.7)
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В этом нетрудно убедиться, проведя соответствующие рассуждения, приведенные в доказательстве теоре-
мы 3 [8].

Таким образом, для доказательства теоремы 3 достаточно установить существование, единственность и схо-
димость решений уравнений (5.7). В этих целях нам понадобится аппроксимативное свойство оператора Γn.

Лемма 5.1. Для любой функции y ∈ Y справедлива оценка

‖y − Γny‖Y ⩽ d7En−1 (DpTy) ln n, n = 2, 3, . . . (5.8)

(здесь и далее di
(︀
i = 7, 9

)︀
– некоторые константы, значения которых не зависят от числа n).

Справедливость данной леммы легко следует из представления (2.18), определений (5.6), (2.17) и оценки
(см., например, [12, с. 107])

‖ f − Ln f ‖C ⩽ d7En−1 ( f ) ln n, f ∈ C. (5.9)

Обсудим теперь вопрос о “близости” операторов A и An на подпространстве Xn. Используя уравнения (3.1),
(5.7) и оценку (5.8), для произвольного элемента xn ∈ Xn находим, что

‖Axn − Anxn‖Y = ‖Kxn − ΓnKxn‖Y ⩽ d7En−1 (DpT Kxn) ln n. (5.10)

В силу (3.6) и (5.1) имеем

(Kxn)(t) = (Kzn)(t) +
p∑︁

j=0

m−q−1∑︁
i=0

(−1)i+ jci+n+λψ ji(t).

Следовательно,

DpT Kxn =

p∑︁
j=0

1∫︁
−1

h j(t, s)z( j)
n (s)ds+

∑︁
j

∑︁
i

(−1)i+ jci+n+λg ji(t). (5.11)

В целях полиномиального приближения функции DpT Kxn ∈ C построим следующий элемент:

(Pn−1xn) (t) ≡
∑︁

j

1∫︁
−1

h j
n−1(t, s)z( j)

n (s)ds+
∑︁

j

∑︁
i

(−1)i+ jci+n+λg
ji
n−1(t), (5.12)

где h j
n−1 и g ji

n−1 – полиномы степени n − 1 наилучшего равномерного приближения для h j (по t) и g ji соответ-
ственно. Согласно структуре (5.12) ясно, что Pn−1xn ∈ Πn−1.

На основании выражений (5.11) и (5.12), оценки (2.9) и определения (2.21) последовательно выводим про-
межуточную оценку:

En−1 (DpT Kxn) ⩽ ‖DpT Kxn − Pn−1xn‖C ≡

≡ max
t∈I

⃒⃒⃒⃒
⃒⃒∑︁

j

1∫︁
−1

(︁
h j − h j

n−1

)︁
(t, s)z( j)

n (s)ds +
∑︁

j

∑︁
i

(−1)i+ jci+n+λ

(︁
g ji − g ji

n−1

)︁
(t)

⃒⃒⃒⃒
⃒⃒ ⩽

⩽ 2‖zn‖C(λ)

∑︁
j

Et
n−1(h j) +

∑︁
j

∑︁
i

|ci+n+λ|En−1
(︀
g ji
)︀
⩽ 2d1‖zn‖(λ)

∑︁
j

Et
n−1(h j) + ‖xn‖X

∑︁
j

∑︁
i

En−1
(︀
g ji
)︀
⩽

⩽ 2d1‖xn‖X

∑︁
j

Et
n−1(h j) + 2d1‖xn‖X

∑︁
j

∑︁
i

En−1
(︀
g ji
)︀
= d8

⎧⎨⎩∑︁
j

[︃
Et

n−1(h j) +
∑︁

i

En−1(g ji)

]︃⎫⎬⎭ ‖xn‖ , d8 ≡ 2d1.

(5.13)

Из неравенств (5.10) и (5.13) следует искомая оценка “близости” операторов A и An:

εn ≡ ‖A − An‖Xn→Y ⩽ d9

⎧⎨⎩∑︁
j

[︃
Et

n−1(h j) +
∑︁

i

En−1(g ji)

]︃⎫⎬⎭ ln n. (5.14)

Тогда на основании оценок (5.14) и (5.8) из теоремы 7 (см. [12; гл. 1, §4]) получаем утверждение теоремы 3 с
оценкой погрешности (5.4).

Следствие 3. Если функции h j (по t), g ji и DpTy принадлежат классу Hr
α(S ), то в условиях теоремы 3 верна

оценка
∆x*n = O

(︀
n−r−α ln n

)︀
, r + 1 ∈ N,α ∈ (0, 1] ,

где
Hr
α(S ) ≡

{︀
f ∈ C(r)(I) : ω

(︀
f (r);∆

)︀
⩽ S∆α, S ≡ const > 0

}︀
,

а ω ( f ;∆) – модуль непрерывности функции f ∈ C с шагом ∆, 0 < ∆ ⩽ 2.
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6. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Замечание 1. Согласно определению нормы в пространстве X ≡ D(λ),(q)
−1 {m; 0} нетрудно заметить, что из схо-

димости последовательности (x*n) приближенных решений к точному решению x* = A−1y в метрике X следует
обычная сходимость в пространстве обобщенных функций, т.е. слабая сходимость.

Замечание 2. При численном решении операторных уравнений Ax = y возникает естественный вопрос о
скорости сходимости невязки ρ*n(t) ≡ (Ax*n − y)(t) исследуемого метода. Один из результатов в этом направлении
легко вытекает из основной теоремы 3, а именно: если исходные данные h j, g ji и DpTy уравнения (3.1) принад-
лежат классу Hr

α (0 < α ⩽ 1, r = 0, 1, 2, . . .), то в условиях теоремы 3 справедлива оценка
⃦⃦
ρ*n

⃦⃦
Y = O(n−r−α ln n).

Замечание 3. При q = 0 исследуемое ИДУ (3.1) является ИДУ третьего рода с оператором A : D(p) {m; 0} →
→ C{m},(p)

0 , а прямой проекционный метод (5.1)–(5.3) – специальным для ИДУ третьего рода вариантом ОМК.
Следовательно, теорема 3 содержит в себе известные результаты [16] по обоснованию специального варианта
ОМК при приближенном решении уравнений третьего рода в классе обобщенных функций.

Замечание 4. Так как в условиях теоремы 3 аппроксимирующие операторы An обладают свойством вида⃦⃦
A−1

n

⃦⃦
= O(1), A−1

n : Yn → Xn, n ⩾ n1, то, очевидно (см. [12; гл. 1, §5]), что предложенный в настоящей
работе прямой метод для ИДУ (3.1) устойчив относительно малых возмущений исходных данных. Это позво-
ляет найти численное решение исследуемых уравнений на ЭВМ с любой наперед заданной степенью точности.
Более того, если ИДУ (3.1) хорошо обусловлено, то хорошо обусловленной является также СЛАУ (5.3).
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