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Рассмотрена первая начально-краевая задача для параболической системы второго порядка в полуограничен-
ной области на плоскости. Коэффициенты системы удовлетворяют двойному условию Дини. Функция, зада-
ющая боковую границу области, непрерывно дифференцируема на отрезке. При непрерывно дифференци-
руемой правой части граничного условия первого рода и начальной функции, которая является непрерывной
и ограниченной вместе со своими первой и второй производными, установлено, что решение поставленной
задачи непрерывно и ограниченно в замыкании области вместе со своими старшими производными. Дока-
заны соответствующие оценки. Дано интегральное представление решения. Если боковая граница области
имеет “углы”, а граничная функция – кусочно-непрерывную производную, то в этом случае доказано, что,
несмотря на негладкость боковой границы и граничной функции, старшие производные решения непрерыв-
ны всюду в замыкании области, кроме угловых точек, и при этом ограничены. Библ. 22.
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ВВЕДЕНИЕ

Предметом исследования настоящей работы является первая начально-краевая задача для параболической
cистемы второго порядка (одномерной по пространственной переменной) с коэффициентами, удовлетворяю-
щими двойному условию Дини, в полуограниченной области Ω на плоскости.

Если коэффициенты параболической системы удовлетворяют условию Гёльдера, функция g, задающая бо-
ковую границу области, достаточно гладкая, а именно, из класса H1+α/2[0,T ], где 0 < α < 1, и если правая
часть граничного условия первого рода ψ ∈ H1+α/2[0,T ], начальная функция h ∈ H2+α(R), правая часть системы
f ∈ Hα,α/2(D), то согласно [1] (см. также [2, c. 706]) существует единственное решение первой начально-краевой
задачи в классе H2+α,1+α/2(Ω).

Естественно возникает вопрос: если в цитируемом выше результате В.А.Солонникова (см. [1]) положить
α = 0 в условиях для боковой границы, правой части граничного условия и начальной функции, то можно ли
утверждать, что решение будет принадлежать пространству C2,1(Ω).

В настоящей статье дается положительный ответ на этот вопрос для параболической системы второго по-
рядка с коэффициентами, которые удовлетворяют двойному условию Дини, в полуограниченной области на
плоскости. А именно, для такой системы доказывается, что если g ∈ C1[0,T ],ψ ∈ C1[0,T ], h ∈ C2(R) и f ∈ Hω(D),
гдеω ∈ 𝒟 (см. ниже (1)), то решение первой начально-краевой задачи принадлежит классу ̂︀C2,1(Ω) (см. ниже (2)).
Пространство ̂︀C2,1(Ω) совпадает с пространством H2+α,1+α/2(Ω) при подстановке в определение последнего α = 0,
при этом их нормы эквивалентны. Доказываются соответствующие оценки. Дается интегральное представле-
ние решения.

“Пошаговое” применение полученного результата позволяет рассмотреть случай, когда боковая граница
областиΩ является негладкой, а именно, может иметь “углы”. В этом случае доказывается, что если функции g
и ψ имеют кусочно-непрерывные производные на отрезке [0,T ], h ∈ C2(R), f ∈ Hω(D), где ω ∈ 𝒟, то (несмотря
на негладкость боковой границы и граничной функции) старшие производные решения непрерывны всюду в
замыкании области, кроме угловых точек, и при этом ограничены. Доказываются соответствующие оценки.
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24 БАДЕРКО, ФЕДОРОВ

Однозначная разрешимость в классе C2,1(Ω) ∩ C1,0(Ω) рассматриваемых в данной работе задач следует из
[3]–[6].

Достаточно слабые условия на коэффициенты системы, боковую границу области, правую часть гранич-
ного условия первого рода и начальную функцию не позволяют применить известные методы, которые ис-
пользуются для изучения характера гладкости решения первой начально-краевой задачи (см. [1], [2, c. 461]) в
пространстве H2+α,1+α/2(Ω), где 0 < α < 1.

Ранее в [7], [8] была изучена первая начально-краевая задача с нулевым начальным условием для однород-
ной параболической системы в области Ω, боковая граница которой допускает наличие “клюва” при t = 0.
Если ψ ∈ C1[0,T ], то при выполнении двух естественных условий согласования (ψ(0) = ψ′(0) = 0), несмотря
на негладкость боковой границы области, было показано, что такая задача разрешима в классе ̂︀C2,1(Ω). Метод
настоящей статьи существенно опирается на этот результат.

Заметим, что начально-краевые задачи для параболических систем моделируют процессы тепло- и массопе-
реноса в многокомпонентных материалах (см., например, [9]–[11]), а рассматриваемый характер негладкости
боковой границы области – возможное резкое изменение границ некоторых металлов (железо, марганец, ти-
тан, олово и др.) при фазовых превращениях (см., например, [12, c. 49–52]).

В настоящей работе также исследуется задача Коши в полосе D на плоскости. Хорошо известно, согласно [1]
(см. также [2, c. 361]), что если коэффициенты параболической системы удовлетворяют условию Гёльдера и
если начальная функция h ∈ H2+α(R), правая часть системы f ∈ Hα,α/2(D), где 0 < α < 1, то задача однозначно
разрешима в пространстве H2+α,1+α/2(D).

Мы изучаем вопрос о характере гладкости решения, когда в цитируемом выше результате В.А.Солонникова
(см. [1]) рассматривается α = 0. А именно, для неоднородной параболической системы с коэффициентами,
удовлетворяющими двойному словию Дини, доказывается, что если h ∈ C2(R) и f ∈ Hω(D), где ω ∈ 𝒟, то
решение задачи Коши принадлежит пространству ̂︀C2,1(D) (в [13] этот случай был рассмотрен для однородной
системы). При этом решение имеет вид суммы параболических потенциалов Пуассона и объемных масс. Этот
результат используется при рассмотрении указанной выше первой начально-краевой задачи, а также имеет са-
мостоятельный интерес.

Работа состоит из пяти разделов. В разд. 1 вводятся функциональные пространства и формулируются основ-
ные теоремы. Раздел 2 посвящен рассмотрению задачи Коши и изучению вопроса о характере регулярности ее
решения. В разд. 3 устанавливается разрешимость рассмотренной ранее в [8] первой начально-краевой задачи
в области c негладкой при t = 0 боковой границей и исследуется характер гладкости полученного решения при
отсутствии второго условия согласования. Раздел 4 посвящен доказательству теорем о характере регулярности и
об интегральном представлении решения первой начально-краевой задачи в области с боковой границей клас-
са C1[0,T ]. В разд. 5 доказывается теорема о характере регулярности решения поставленной задачи в области,
боковая граница которой может иметь “углы”.

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ И ФОРМУЛИРОВКА ОСНОВНОГО РЕЗУЛЬТАТА

Пусть числа T > 0, m ∈ N фиксированы. Для любого отрезка [α, β] ⊂ [0,T ] введем пространство C[α, β]
непрерывных (вектор-) функций φ : [α, β]→ Rm, с нормой

‖φ; [α, β]‖(0) = max
t∈[α,β]

|φ(t)|.

Через C1[α, β] обозначим пространство (вектор-) функцийψ : [α, β]→ Rm, непрерывных вместе со своей первой
производной, с нормой

‖ψ; [α, β]‖(1) = max
t∈[α,β]

|ψ(t)| + max
t∈[α,β]

|ψ′(t)|.

Через C2(R) обозначим пространство (вектор-) функций h : R → Rm, непрерывных и ограниченных вместе со
своей первой и второй производными, с нормой

‖h;R‖(2) =

2∑︁
k=0

sup
x∈R
|h(k)(x)|.

Модулем непрерывности, согласно [14, с. 150–151], называем непрерывную, неубывающую, полуаддитивную
функцию ω : [0,+∞)→ R такую, что ω(0) = 0. Модуль непрерывности ω удовлетворяет условию Дини, если

̃︀ω(z) =

z∫︁
0

ω(x)x−1dx < ∞, z > 0. (1)
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Через𝒟 обозначим множество, состоящее из модулей непрерывности, удовлетворяющих условию (1).
На плоскости R2 переменных x и t рассматриваем полосу

D = {(x, t) ∈ R2 | x ∈ R, 0 < t < T }.

Через Hω(D) обозначим пространство непрерывных (вектор-) функций f : D → Rm, для которых конечно
выражение

‖ f ; D‖ω = sup
(x,t)∈D

| f (x, t)| + sup
(x,t),(x+∆x,t)∈D

|∆x|̸=0

| f (x + ∆x, t) − f (x, t)|
ω(|∆x|)

,

где ω ̸≡ 0 – модуль непрерывности.
Пусть Ω ⊂ D. Через C(Ω) обозначим пространство (вектор-) функций u, непрерывных в Ω. Положим

C2,1(Ω) – пространство (вектор-) функций u, непрерывных и ограниченных вместе со своими первыми по x, t и
второй производной по x в Ω.

Следуя [2, c. 16], через H2+α,1+α/2(Ω), 0 < α < 1, обозначим пространство (вектор-) функций u, непрерывных
вместе со своими первыми по x, t и второй производной по x в Ω, для которых конечно выражение

‖u‖(2+α)
Ω =

∑︁
2l+k⩽2

sup
(x,t)∈Ω

⃒⃒⃒ ∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒
+

+
∑︁

2l+k=2

(︁
sup

(x,t),(x+∆x,t)∈Ω
|∆x|≠0

1
|∆x|α

⃒⃒⃒
∆x
∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒
+ sup

(x,t),(x,t+∆t)∈Ω
|∆t|̸=0

1
|∆t|α/2

⃒⃒⃒
∆t
∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒)︁
+

+ sup
(x,t),(x,t+∆t)∈Ω

|∆t|̸=0

1
|∆t|(1+α)/2

⃒⃒⃒
∆t
∂u
∂x

(x, t)
⃒⃒⃒
.

Здесь и далее
∆x f (x, t) = f (x + ∆x, t) − f (x, t), ∆t f (x, t) = f (x, t + ∆t) − f (x, t),

для любой функции f .
Для матрицы B (или вектора b) через |B| (соответственно, |b|) обозначаем максимум из модулей элементов B

(компонент b).
Под значениями (вектор-) функций и их производных на границе области понимаем их предельные значе-

ния “изнутри” области.
Через ̂︀C2,1(Ω) обозначим подпространство (вектор-) функций u ∈ C2,1(Ω), для которых конечно выражение

‖u;Ω‖(2) =
∑︁

2l+k⩽2

sup
(x,t)∈Ω

⃒⃒⃒ ∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒
+ sup

(x,t),(x,t+∆t)∈Ω
|∆t|̸=0

1
|∆t|1/2

⃒⃒⃒
∆t
∂u
∂x

(x, t)
⃒⃒⃒
. (2)

Кроме того, полагаем

̂︀C
0

2,1
(Ω) = {u ∈ ̂︀C2,1(Ω) : u(x, 0) =

∂u
∂x

(x, 0) =
∂2u
∂x2(x, 0) =

∂u
∂t

(x, 0) = 0}.

Заметим, что пространство ̂︀C2,1(Ω) совпадает с пространством H2+α,1+α/2(Ω) при подстановке в определение по-
следнего α = 0, при этом нормы ‖·;Ω‖(2) и ‖·‖2+0

Ω эквивалентны.
Через C1,0(Ω) обозначим пространство (вектор-) функций u, непрерывных и ограниченных вместе со своей

первой производной по x в Ω, с нормой

‖u;Ω‖(1) = sup
(x,t)∈Ω

⃒⃒⃒
u(x, t)

⃒⃒⃒
+ sup

(x,t)∈Ω

⃒⃒⃒∂u
∂x

(x, t)
⃒⃒⃒
.

Пусть ω0 – модуль непрерывности, удовлетворяющий двойному условию Дини:

̃︀̃︀ω0(z) =

z∫︁
0

y−1dy

y∫︁
0

ω0(ξ)ξ−1dξ < ∞, z > 0,

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



26 БАДЕРКО, ФЕДОРОВ

и такой, что для некоторого ε0 ∈ (0, 1) функция ν(z) = ω0(z)z−ε0 , z > 0, почти убывает, а именно, существует C > 0
такое, что ν(z1) ⩽ Cν(z2), z1 ⩾ z2 > 0.

В полосе D рассмотрим равномерно параболический по Петровскому (см. [15]) оператор

Lu =
∂u
∂t
−

2∑︁
k=0

Ak(x, t)
∂ku
∂xk ,

где u = (u1, u2, . . . , um)⊤, m ∈ N, и Ak = ||ai jk ||
m
i, j=1, k = 0, 1, 2, суть m × m матрицы, элементы которых — веществен-

нозначные функции, определенные в D и удовлетворяющие следующим условиям:
(a) для собственных чисел µr матрицы A2 выполнено Re µr(x, t) ⩾ δ для некоторого δ > 0 и всех (x, t) ∈ D,

r = 1, . . . ,m;
(б) функции ai jk ограничены в D и справедливы оценки⃒⃒⃒

ai jk(x + ∆x, t + ∆t) − ai jk(x, t)
⃒⃒⃒
⩽ ω0(|∆x| + |∆t|1/2),

где (x, t), (x + ∆x, t + ∆t) ∈ D, i, j = 1, . . . ,m, k = 0, 1, 2.

Пусть

Z(x, t; A2(ξ, τ)) =
1

2π

+∞∫︁
−∞

eiσx exp(−A2(ξ, τ)σ2t)dσ,

где x, ξ ∈ R, t > 0, 0 ⩽ τ ⩽ T . Справедливы неравенства (см. [16, c. 298, 306]):⃒⃒⃒ ∂l+kZ
∂tl∂xk(x, t; A2(ξ, τ))

⃒⃒⃒
⩽ C(l, k)t−(2l+k+1)/2 exp(−cx2/t), (3)

⃒⃒⃒ ∂l+kZ
∂tl∂xk(x, t; A2(ξ + ∆ξ, τ)) −

∂l+kZ
∂tl∂xk(x, t; A2(ξ, τ))

⃒⃒⃒
⩽ C(l, k)t−(2l+k+1)/2

ω0(|∆ξ|) exp(−cx2/t), (4)

где x, ξ, ξ + ∆ξ ∈ R, t > 0, 0 ⩽ τ ⩽ T , k, l ⩾ 0.

Положим D* = {(x, t; ξ, τ) ∈ D×D : t > τ}. Известно (см. [17], если m = 1, и [18], если m ⩾ 2), что при условиях
(a), (б) существует фундаментальная матрица решений Γ(x, t; ξ, τ) системы Lu = 0, для нее выполнены оценки:⃒⃒⃒ ∂l+kΓ

∂tl∂xk(x, t; ξ, τ)
⃒⃒⃒
⩽ C(t − τ)−(2l+k+1)/2 exp

(︁
−c

(x − ξ)2

t − τ

)︁
, 0 ⩽ 2l + k ⩽ 2, (5)

и, кроме того, для функции
W(x, t; ξ, τ) ≡ Γ(x, t; ξ, τ) − Z(x − ξ, t − τ; A2(ξ, τ))

справедливы неравенства⃒⃒⃒∂l+kW
∂tl∂xk(x, t; ξ, τ)

⃒⃒⃒
⩽ C̃︀ω0((t − τ)1/2)(t − τ)−(2l+k+1)/2 exp

(︁
−c

(x − ξ)2

t − τ

)︁
, 0 ⩽ 2l + k ⩽ 2, (6)

⃒⃒⃒
∆t
∂W
∂x

(x, t; ξ, τ)
⃒⃒⃒
⩽ C
|∆t|1/2̃︀ω0((t − τ)1/2)

(t − τ)3/2 exp
(︁
−c

(x − ξ)2

t − τ

)︁
, (7)

(x, t; ξ, τ), (x, t + ∆t; ξ, τ) ∈ D*, 0 < ∆t ⩽ t − τ.
Пусть Ω – полуограниченная область следующего вида:

Ω = {(x, t) ∈ D | x > g(t)}, g ∈ C[0,T ],

с боковой границей
Σ = {(x, t) ∈ D | x = g(t)}.

Рассмотрим задачу о нахождении (вектор-) функции u ∈ C(Ω), являющуюся классическим решением урав-
нения

Lu = f , (x, t) ∈ Ω, (8)

удовлетворяющей начальному условию

u(x, 0) = h(x), x ⩾ g(0), (9)
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и граничному условию первого рода
u(g(t), t) = ψ(t), 0 ⩽ t ⩽ T. (10)

Cледуя [8], для φ ∈ C[0,T ] положим

Sφ(x, t) =

t∫︁
0

Y(x, t; g(τ), τ)φ(τ)dτ, (x, t) ∈ Ω, (11)

где

Y(x, t; g(τ), τ) =

+∞∫︁
0

Γ(x, t; g(τ) − r, τ)dr, (x, t) ∈ D, 0 ⩽ τ < t.

Кроме того, для любых непрерывных и ограниченных функций h : R→ Rm и f : D→ Rm положим

Ph(x, t) =

+∞∫︁
−∞

Γ(x, t; ξ, 0)h(ξ)dξ, h = (h1, h2, . . . , hm)⊤, (x, t) ∈ D, (12)

V f (x, t) =

t∫︁
0

dτ

+∞∫︁
−∞

Γ(x, t; ξ, τ) f (ξ, τ)dξ, f = ( f1, f2, . . . , fm)⊤, (x, t) ∈ D. (13)

Основными результатами работы являются следующие три теоремы.
Пусть P0 = (g(0), 0). Через ̂︀C2,1(Ω ∖P0) обозначим пространство (вектор-) функций u, непрерывных вместе со

своей первой производной по x в Ω и имеющих непрерывные в Ω ∖ P0 вторую по x и первую по t производные,
для которых конечно выражение (2).

Теорема 1. Пусть выполнены условия (a), (б) и g ∈ C1[0,T ]. Тогда для любых (вектор-) функций f ∈ Hω(D), где
ω ∈ 𝒟, h ∈ C2(R), ψ ∈ C1[0,T ] с условием согласования

ψ(0) = h(g(0)), (14)

для решения u ∈ C1,0(Ω) задачи (8)–(10) справедливы включение u ∈ ̂︀C2,1(Ω ∖ P0) и оценка

‖u;Ω‖(2) ⩽ C
(︁
‖ψ; [0,T ]‖(1) + ‖h;R‖(2) + ‖ f ; D‖ω

)︁
. (15)

Если, кроме того, выполнено второе условие согласования

ψ
′(0) = g′(0)h′(g(0)) +

2∑︁
k=0

Ak(g(0), 0)h(k)(g(0)) + f (g(0), 0), (16)

то для решения u ∈ C1,0(Ω) задачи (8)–(10) справедливо включение u ∈ ̂︀C2,1(Ω).
Здесь и далее через C обозначаем положительные постоянные, зависящие от T , δ, m, коэффициентов опе-

ратора L и боковой границы Σ, конкретный вид которых для нас неважен.
Замечание 1. Существование и единственность решения задачи (8)–(10) в классе C1,0(Ω) следует из [3]–[6].
Теорема 2. Пусть выполнены условия теоремы 1. Тогда для любого решения u ∈ C1,0(Ω) задачи (8)–(10) имеет

место интегральное представление

u(x, t) = Sφ(x, t) + Ph(x, t) + V f (x, t), (x, t) ∈ Ω,

где φ : [0,T ] → Rm – единственное в пространстве C[0,T ] решение системы граничных интегральных уравнений
Вольтерра первого рода

t∫︁
0

Y(g(t), t; g(τ), τ)φ(τ)dτ = ψ(t) − Ph(g(t), t) − V f (g(t), t), t ∈ [0,T ]. (17)

Замечание 2. Если m = 1, то утверждения теорем 1, 2 справедливы для любого ограниченного решения задачи
(8)–(10) (см. [19]).
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Замечание 3. В случае f ≡ 0, h ≡ 0, при выполнении условий ψ ∈ C1[0,T ], ψ(0) = ψ′(0) = 0, существование

решения задачи (8)–(10) в классе u ∈ ̂︀C
0

2,1
(Ω) доказано в [8]. При этом допускается негладкость боковой границы

Σ при t = 0, а именно, предполагается выполненным условие

g ∈ C[0,T ],
⃒⃒⃒
g′(t)

⃒⃒⃒
⩽
ω(t1/2)

t1/2 , 0 < t ⩽ T, (18)

где ω – некоторый модуль непрерывности.
Далее рассмотрим случай, когда боковая граница Σ области Ω является негладкой, а именно, имеет углы.
Пусть на интервале (0,T ) задано множество точек

{t1, . . . , tN ∈ (0,T ) | 0 < t1 < · · · < tN < T }, N ∈ N. (19)

Через PC1[0,T ] обозначим пространство непрерывных (вектор-) функций ψ ∈ C[0,T ], производные ψ′ которых
кусочно-непрерывны со множеством (19) точек разрыва первого рода, с нормой⃦⃦⃦

ψ; [0,T ]
⃦⃦⃦(1)

N
=

N∑︁
k=0

‖ψ; [tk, tk+1]‖(1), где t0 = 0, tN+1 = T.

Пусть
P = {P0, P1, . . . , PN}, где Pk = (g(tk), tk), k = 1, . . . ,N, N ∈ N.

Через ̂︀C2,1(Ω ∖ P) обозначим пространство (вектор-) функций u, непрерывных вместе со своей первой произ-
водной по x вΩ и имеющих непрерывные вΩ ∖ P вторую по x и первую по t производные, для которых конечно
выражение (2).

Теорема 3. Пусть выполнены условия (a), (б) и g ∈ PC1[0,T ]. Тогда для любых (вектор-) функций f ∈ Hω(D), где
ω ∈ 𝒟, h ∈ C2(R), ψ ∈ PC1[0,T ], с условием согласования (14), для решения u ∈ C1,0(Ω) задачи (8)–(10) справедливы
включение u ∈ ̂︀C2,1(Ω ∖ P) и оценка

‖u;Ω‖(2) ⩽ C
(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
. (20)

Замечание 4. Существование и единственность решения задачи (8)–(10) в классе C1,0(Ω) следует из [3]–[6].

2. О ЗАДАЧЕ КОШИ

Лемма 1. Пусть выполнены условия (a), (б). Тогда для любой (вектор-) функции f ∈ Hω(D), где ω ∈ 𝒟, объемный
потенциал V f принадлежит пространству ̂︀C2,1(D) и справедлива оценка

‖V f ; D‖(2) ⩽ C‖ f ; D‖ω.

Доказательство. Так как потенциал V f удовлетворяет уравнению

Lu = f в D,

то для доказательства включения V f ∈ ̂︀C2,1(D) достаточно установить неравенства⃒⃒⃒∂kV f
∂xk (x, t)

⃒⃒⃒
⩽ C‖ f ; D‖ωt1−k/2, k = 0, 1, (21)

⃒⃒⃒∂2V f
∂x2 (x, t)

⃒⃒⃒
⩽ C

(︁̃︀ω(t1/2) + ̃︀̃︀ω0(t1/2)
)︁
‖ f ; D‖ω, (22)⃒⃒⃒

∆t
∂V f
∂x

(x, t)
⃒⃒⃒
⩽ C‖ f ; D‖ω|∆t|1/2, (23)

(x, t), (x, t + ∆t) ∈ D. Оценки (21), (22) доказываются аналогично методу, изложенному в [20, c. 109–110].
Докажем оценку (23). При 0 < t ⩽ ∆t неравенство (23) следует из оценки (21) при k = 1. В случае 0 < ∆t < t

справедливо представление

∆t
∂V f
∂x

(x, t) =

t+∆t∫︁
t−∆t

dτ

+∞∫︁
−∞

∂Γ

∂x
(x, t + ∆t; ξ, τ) f (ξ, τ)dξ −

t∫︁
t−∆t

dτ

+∞∫︁
−∞

∂Γ

∂x
(x, t; ξ, τ) f (ξ, τ)dξ +

t−∆t∫︁
0

dτ

+∞∫︁
−∞

∆t
∂Γ

∂x
(x, t; ξ, τ) f (ξ, τ)dξ ≡
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≡ J1(x, t,∆t) + J2(x, t,∆t) + J3(x, t,∆t).

Оценим J1 (интеграл J2 оценивается аналогично). Из неравенства (5) имеем

⃒⃒⃒
J1(x, t,∆t)

⃒⃒⃒
⩽ C‖ f ; D‖ω

t+∆t∫︁
t−∆t

dτ
(t + ∆t − τ)1/2 ⩽ C‖ f ; D‖ω|∆t|1/2.

Оценим J3. Из представления

J3(x, t,∆t) =

t−∆t∫︁
0

dτ

+∞∫︁
−∞

∆t
∂Z
∂x

(x − ξ, t − τ; A2(ξ, τ)) f (ξ, τ)dξ +

t−∆t∫︁
0

dτ

+∞∫︁
−∞

∆t
∂W
∂x

(x, t; ξ, τ) f (ξ, τ)dξ

и неравенств (3), (7) следует оценка

⃒⃒⃒
J3(x, t,∆t)

⃒⃒⃒
⩽ C|∆t|1/2‖ f ; D‖ω

t−∆t∫︁
0

(︁ |∆t|1/2

(t − τ)3/2 +
̃︀ω0((t − τ)1/2)

t − τ

)︁
dτ ⩽ C‖ f ; D‖ω(1 + ̃︀̃︀ω0(T 1/2))|∆t|1/2.

Отсюда получаем неравенство (23). Лемма 1 доказана.
В [13] доказана следующая
Лемма 2. Пусть выполнены условия (a), (б). Тогда для любой (вектор-) функции h ∈ C2(R) потенциал Пуассона

Ph принадлежит пространству ̂︀C2,1(D) и справедлива оценка:

‖Ph; D‖(2) ⩽ C‖h;R‖(2).

Рассмотрим задачу Коши
Lu = f , (x, t) ∈ D, u(x, 0) = h(x), x ∈ R. (24)

Из лемм 1, 2 следует
Теорема 4. Пусть выполнены условия (a), (б). Тогда для любых f ∈ Hω(D), где ω ∈ 𝒟, и h ∈ C2(R) (вектор-)

функция
u(x, t) = V f (x, t) + Ph(x, t), (x, t) ∈ D,

является единственным в классе C2,1(D) решением задачи (24). Это решение принадлежит пространству ̂︀C2,1(D), и
справедлива оценка

‖u; D‖(2) ⩽ C
(︁
‖h;R‖(2) + ‖ f ; D‖ω

)︁
.

Замечание. Единственность решения задачи (24) в классе C2,1(D) следует из [21].

3. О ЗАДАЧЕ ДЛЯ ОДНОРОДНОЙ СИСТЕМЫ С НУЛЕВЫМ НАЧАЛЬНЫМ УСЛОВИЕМ

Рассмотрим следующую первую начально-краевую задачу:

Lu = 0 в Ω, u
⃒⃒⃒
t=0
= 0, u

⃒⃒⃒
Σ
= ψ. (25)

В этом разделе боковая граница Σ допускает при t = 0 наличие “клюва” (см. (18)).
Лемма 3. Пусть выполнены условия (a), (б) и (18). Тогда для любой (вектор-) функции ψ ∈ C1[0,T ] с условием

ψ(0) = 0 решением задачи (25) является (векторный) параболический потенциал (см. (11))

u(x, t) = Sφ(x, t), (x, t) ∈ Ω, (26)

где φ : [0,T ] → Rm единственное в пространстве C[0,T ] решение системы граничных интегральных уравнений
Вольтерра первого рода

t∫︁
0

Y(g(t), t; g(τ), τ)φ(τ)dτ = ψ(t), t ∈ [0,T ]. (27)

При этом справедливы включение u ∈ ̂︀C2,1(Ω ∖ P0) и оценка

‖u;Ω‖(2) ⩽ C‖ψ; [0,T ]‖(1). (28)
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Если, кроме того, выполнено условие ψ′(0) = 0, то справедливо включение u ∈ ̂︀C
0

2,1
(Ω).

Доказательство. Ищем решение в виде потенциала (26) с плотностью φ, подлежащей определению. Для лю-
бой φ ∈ C[0,T ] потенциал (26) удовлетворяет уравнению и начальному условию из (25). Подставляя (26) в гра-
ничное условие из (25), для определения неизвестной плотности φ ∈ C[0,T ] получаем интегральное уравнение
Вольтерры первого рода (27). Из леммы 4 работы [8] следует, что это уравнение имеет единственное решение
φ ∈ C[0,T ] и справедлива оценка

‖φ; [0,T ]‖(0) ⩽ C‖ψ; [0,T ]‖(1). (29)

Подставляя решение φ уравнения (27) в выражение (26), получим, что определенная таким образом функция u
является решением задачи (25). При этом из лемм 1–3 работы [8] следует включение u ∈ ̂︀C2,1(Ω ∖ P0) и оценка

‖u;Ω‖(2) ⩽ C‖φ; [0,T ]‖(0).

Отсюда и из (29) получаем неравенство (28).

Если дополнительно выполнено условие ψ′(0) = 0, то из теоремы 1 работы [8] следует включение u ∈ ̂︀C
0

2,1
(Ω).

Лемма 3 доказана.
Замечание. Если модуль непрерывности в (18) дополнительно удовлетворяет условию (1), то однозначная

разрешимость задачи (25) в классе u ∈ C1,0(Ω) следует из результатов работ [3], [6].

4. ДОКАЗАТЕЛЬСТВО ТЕОРЕМ 1, 2

С помощью замены (см. (12), (13))

u(x, t) = v(x, t) + Ph(x, t) + V f (x, t), (30)

поставленная задача (8)–(10) сводится к задаче

Lv = 0 в Ω, (31)

v(x, 0) = 0, x ⩾ g(0), (32)

v(g(t), t) = Ψ(t), 0 ⩽ t ⩽ T, (33)

где
Ψ(t) = ψ(t) − Ph(g(t), t) − V f (g(t), t), 0 ⩽ t ⩽ T.

Из условия согласования (14), неравенства (21) при k = 0, а также из леммы 2 получаем, чтоΨ(0) = 0. Из условия
g ∈ C1[0,T ], включений Ph,V f ∈ ̂︀C2,1(D) (см. леммы 1, 2) и равенства

Ψ′(t) = ψ′(t) − g′(t)
(︁∂Ph
∂x

(g(t), t) +
∂V f
∂x

(g(t), t)
)︁
−
∂Ph
∂t

(g(t), t) −
∂V f
∂t

(g(t), t), 0 ⩽ t ⩽ T,

получаем, что Ψ ∈ C1[0,T ].
Из леммы 3 следует, что решением задачи (31)–(33) является (векторный) параболический потенциал

v(x, t) = Sφ(x, t),

где (вектор-) функция φ единственное в пространстве C[0,T ] решение уравнения (17). При этом v ∈ ̂︀C2,1(Ω ∖ P0)
и справедлива оценка

‖v;Ω‖(2) ⩽ C‖Ψ; [0,T ]‖(1).

Если дополнительно выполнено условие согласования (16), то Ψ′(0) = 0. В этом случае из леммы 3 следует

включение v ∈ ̂︀C
0

2,1
(Ω).

Подставляя полученную функцию v в представление (30) и используя леммы 1, 2, получаем окончательно
утверждения теорем 1 и 2.

Введем вспомогательные функциональные пространства и рассмотрим две леммы, необходимые для даль-
нейшего.

Через C2,1(Ω ∖ P0) обозначим пространство (вектор-) функций u, непрерывных вместе со своей первой про-
изводной по x в Ω и имеющих непрерывные и ограниченные в Ω ∖ P0, вторую по x и первую по t производные,
для которых конечно выражение

‖u;Ω‖2,1 =
∑︁

2r+s⩽2

sup
(x,t)∈Ω

⃒⃒⃒ ∂r+su
∂tr∂xs(x, t)

⃒⃒⃒
.
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Через C2([a,+∞)), a ∈ R, обозначим пространство (вектор-) функций h : [a,+∞) → Rm, непрерывных и
ограниченных вместе со своей первой и второй производными, с нормой

‖h; [a,+∞)‖(2) =

2∑︁
k=0

sup
x∈[a,+∞)

|h(k)(x)|.

Лемма 4. Пусть
u ∈ C2,1(Ω ∖ P0), h(x) = u(x,T ), x ⩾ g(T ).

Тогда справедливы включение
h ∈ C2[g(T ),+∞), (34)

оценка
‖h; [g(T ),+∞)‖(2) ⩽ ‖u,Ω‖2,1 (35)

и предельные соотношения

lim
(x,t)→(xT ,T )

(x,t)∈Ω

∂ku
∂xk(x, t) = h

(k)
(xT ), k = 1, 2, xT ⩾ g(T ). (36)

Доказательство. Сделаем замену переменной

y = x − g(t)

и положим
v(y, t) = u(y + g(t), t), (y, t) ∈ [0,+∞) × [0,T ]. (37)

Тогда
∂kv
∂yk(y, t) =

∂ku
∂xk(x, t)

⃒⃒⃒
x=y+g(t)

, k = 0, 1, 2, (y, t) ∈ [0,+∞) × [0,T ].

Введем обозначение ̂︀h(y) = v(y,T ), y ∈ [0,+∞).

В силу (37) справедливы включение ̂︀h ∈ C[0,+∞) и оценка

sup
y∈[0,+∞)

|̂︀h(y)| ⩽ sup
(x,t)∈Ω

⃒⃒⃒
u(x, t)

⃒⃒⃒
.

Рассмотрим последовательность функций

hn(y) = v(y,T − 1/n), y ⩾ 0, n ∈ N.

Не ограничивая общности, считаем, что 1/n < T/2. Зафиксируем произвольно M > 0. Имеем hn(y) ∈ C2[0,M],
последовательность функций (hn(y))n∈N сходится к функции ̂︀h(y) на [0,M], последовательность производных

(h′n(y))n∈N сходится равномерно на отрезке [0,M] в силу равномерной непрерывности
∂v
∂y

на [0,M]× [T/2,T ]. Сле-

довательно, существует ̂︀h′ ∈ C[0,M], причем

lim
n→∞

h′n(y) = ̂︀h′(y), y ∈ [0,M],

и

sup
y∈[0,+∞)

|̂︀h′(y)| ⩽ sup
(x,t)∈Ω

⃒⃒⃒∂u
∂x

(x, t)
⃒⃒⃒
.

Аналогично, получаем, что существует ̂︀h′′ ∈ C[0,M], причем

lim
n→∞

h′′n (y) = ̂︀h′′(y), y ∈ [0,M],

и

sup
y∈[0,+∞)

|̂︀h′′(y)| ⩽ sup
(x,t)∈Ω

⃒⃒⃒∂2u
∂x2(x, t)

⃒⃒⃒
.
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В силу произвольности M > 0, отсюда следует, что имеет место включение ̂︀h ∈ C2[0,+∞) и оценка

‖̂︀h; [0,+∞)‖2 ⩽ ‖u,Ω‖2,1.

Возвращаясь к функции h, получаем включение (34), оценку (35) и предельные соотношения (36). Лемма 4
доказана.

Аналогично доказывается следующая
Лемма 5. Если u ∈ C2,1(Ω ∖ P0) и h(x) = u(x, 0), то справедливы предельные соотношения

lim
(x,t)→(x0,0)

(x,t)∈Ω

∂u
∂x

(x, t) = h′(x0), x0 ⩾ g(0),

lim
(x,t)→(x0,0)

(x,t)∈Ω

∂2u
∂x2(x, t) = h′′(x0), x0 > g(0).

5. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 3

Заметим (см. [22, c. 587–588]), что любую функцию h ∈ C2([a,+∞)) можно продолжить на всю числовую ось
с сохранением класса h* ∈ C2(R), причем

‖h*;R‖(2) ⩽ C‖h; [a,+∞)‖(2). (38)

Перейдем к доказательству теоремы 3. Пусть u ∈ C1,0(Ω) – решение задачи (8)–(10). Положим

hk(x) = u(x, tk), x ⩾ g(tk), k = 0, . . . ,N,

Ωk = {(x, t) ∈ D | x > g(t), tk < t < tk+1}, k = 0, . . . ,N,

где
t0 = 0, tN+1 = T.

Докажем сначала, что
u ∈ ̂︀C2,1(Ωk ∖ Pk), k = 0, . . . ,N, (39)

причем

‖u;Ωk‖
(2) ⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, k = 0, . . . ,N. (40)

В самом деле, для k = 0 включение (39) и оценка (40) сразу следуют из теоремы 1. Предположим, что (39), (40)
выполнены для некоторого k, 0 ⩽ k ⩽ N − 1. В силу леммы 4 справедливы включение

hk+1 ∈ C2[g(tk+1),+∞)

и оценка
‖hk+1; [g(tk+1),+∞)‖(2) ⩽ ‖u,Ωk‖

2,1. (41)

Обозначим продолжение функции hk+1 на всю числовую ось с сохранением класса через h*k+1 ∈ C2(R). Из нера-
венства (38) следует оценка

‖h*k+1;R‖(2) ⩽ C‖hk+1; [g(tk+1),+∞)‖(2). (42)

Рассмотрим u на множестве Ωk+1. Функция u ∈ C1,0(Ωk+1) является решением первой начально-краевой задачи

Lu = f в Ωk+1, (43)

u(x, tk+1) = h*k+1(x), x ⩾ g(tk+1), (44)

u(g(t), t) = ψ(t), tk+1 ⩽ t ⩽ tk+2, (45)

где
ψ ∈ C1[tk+1, tk+2], h*k+1 ∈ C2(R),

причем справедливо условие согласования

ψ(tk+1) = hk+1(g(tk+1)) = h*k+1(g(tk+1)).
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Из теоремы 1 для решения u ∈ C1,0(Ωk+1) задачи (43)–(45) справедливы включение (39) с заменой в нем k на k+1
и оценка

‖u;Ωk+1‖
(2) ⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h*k+1;R‖(2) + ‖ f ; D‖ω

)︁
.

Отсюда, используя неравенства (41), (42), получаем оценку (40) с заменой в ней k на k + 1. Таким образом, (39),
(40) доказаны по индукции.

Заметим, что из включения (39) и неравенства (40) следует оценка⃒⃒⃒
∆t
∂u
∂x

(x, t)
⃒⃒⃒
⩽ C|∆t|1/2, (x, t), (x, t + ∆t) ∈ Ω,

и из результатов работ [3], [4] — неравенства⃒⃒⃒∂su
∂xs(x, t)

⃒⃒⃒
⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, (x, t) ∈ Ω, s = 0, 1. (46)

Далее, учитывая леммы 4, 5, делаем вывод, что

∂2u
∂x2(x, tk) = h′′k (x), x > g(tk), k = 1, . . . ,N,

причем
∂2u
∂x2 непрерывна и ограничена на всем множестве Ω ∖ P, и справедлива оценка

⃒⃒⃒∂2u
∂x2(x, t)

⃒⃒⃒
⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, (x, t) ∈ Ω ∖ P. (47)

Наконец, из лемм 4, 5 получаем, что

lim
(x,t)→(x,tk−0)

(x,t)∈Ωk−1

∂u
∂t

(x, t) = lim
(x,t)→(x,tk+0)

(x,t)∈Ωk

∂u
∂t

(x, t) =
2∑︁

s=0

As(x, g(tk))h(s)
k (x) + f (x, tk), x > g(tk), k = 1, . . . ,N.

Отсюда и из непрерывности u на Ω следует, что в точках (x, tk), x > g(tk), k = 1, . . . ,N, существует
∂u
∂t

. Учитывая

непрерывность производных
∂su
∂xs, s = 0, 1, 2, и неравенства (46), (47), получаем непрерывность и ограничен-

ность
∂u
∂t

на всем множестве Ω ∖ P, и оценку

⃒⃒⃒∂u
∂t

(x, t)
⃒⃒⃒
⩽ C

(︁⃒⃒⃒
‖ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, (x, t) ∈ Ω ∖ P.

Таким образом, справедливы включение u ∈ ̂︀C2,1(Ω ∖ P) и неравенство (20). Теорема 3 доказана.
Замечание. Из доказательства теоремы 3 и из леммы 4 следует, что старшие производные решения

u ∈ ̂︀C2,1(Ω ∖ P) задачи (8)–(10) непрерывны “снизу” в точках множества P ∖ P0, а именно:

lim
(x,t)→(g(tk),tk)

(x,t)∈Ωk−1

∂2u
∂x2(x, t) =

∂2u
∂x2(g(tk), tk), k = 1, . . . ,N,

lim
(x,t)→(g(tk),tk)

(x,t)∈Ωk−1

∂u
∂t

(x, t) =
∂u
∂t

(g(tk), tk), k = 1, . . . ,N.
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Abstract. The first initial boundary value problem for a second-order parabolic system in a semi-bounded
domain on the plane is considered. The coefficients of the system satisfy the double Dini condition.
The function defining the lateral boundary of the domain is continuously differentiable on the closed
interval. When the right-hand side of the boundary condition of the first kind is continuously differentiable
and the initial function is continuous and bounded together with its first and second derivatives, it is
established that the solution of the problem is continuous and bounded in the closure of the domain together
with its higher order derivatives. The corresponding estimates are proved. An integral representation of the
solution is given. If the lateral boundary of the domain has “corners” and the boundary function has a
piecewise continuous derivative, it is proved that, despite the lateral boundary and the boundary function
being non-smooth, the higher order derivatives of the solution are continuous everywhere in the closure of
the domain, except the corner points, and are bounded.

Keywords: parabolic systems, first initial boundary value problem, nonsmooth lateral boundary, boundary
integral equations, Dini condition
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