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Abstract. This paper devotes to the approximation of spectral and boundary-value 

problems arising in the stability analysis of incompressible boundary layers. As an 

alternative to the collocation method with mappings, the Galerkin–collocation method 

based on Laguerre functions is adopted. A robust numerical implementation of the latter 

method is discussed. The methods are compared within the stability analysis of the Blasius 

and Ekman layers. The Galerkin-collocation method demonstrates an exponential convergence 

rate for scalar stability characteristics, and has a number of advantages.
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1. Introduction

Three-dimensional small-amplitude disturbances against a main laminar flow a re of 

interest in numerical studies of boundary-layer instabilities. Equations governing the 

evolution of such disturbances are considered on the half-line y > 0, where y is the wall-

normal coordinate, with the boundary conditions

u = v = w = 0 at y = 0, y → +∞ (1.1)

for the velocity components u, v and w (see, e.g., [1–3]). The boundary conditions (1.1)

represent the no-slip condition at the flow-exposed surface y = 0 and decaying of distur-

bances at far distance from the surface. This paper devotes to approximations on y of

such problems.

Spectral methods, including collocation and Galerkin–collocation methods, are a good

choice for the approximation of governing equations, since the equations are linear while
1)The work is supported by the Russian Science Foundation (grant no. 22-11-00025).
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sought disturbances are smooth functions of y. Within the collocation method, the so-

lution is approximated by a series of infinitely-differentiable functions with a non-finite

supply; and the expansion coefficients are determined by requiring the equations to be

satisfied at given grid nodes called collocation points. Within the Galerkin–collocation

method, the equations are approximated in the weak form, Lagrange interpolation func-

tions associated with some grid are used as trial and test functions, and the inner products

are computed by a high-order quadrature formula associated with the same grid. Note

that the Galerkin–collocation method is often called the Galerkin method with numerical

integration [4]. For problems considered on a finite interval, these spectral methods are

discussed, for example, in [4–6]; and procedures from the well-known software packages

[7, 8] can be used for the numerical implementation of these methods.

There are three main approaches for approximating problems considered on the half-

line y > 0 under the boundary conditions (1.1). The first one introduces an artificial

boundary at finite but large distance ymax from the surface. Then the equations are

considered on the interval (0, ymax) under some (e.g., zero or asymptotic [9]) boundary

conditions at y = ymax instead of those at infinity. Coupled with a spectral method

for the finite interval, this approach is widely used in numerical studies of boundary-layer

instabilities (see [3] and references therein). This approach requires choosing the sufficient

value of ymax for a particular problem, and ymax might depend on flow parameters. Note

that boundary conditions for the velocity components at any y = ymax might allow for

solutions that do not decay as y → +∞. For boundary-layer stability problems, solutions

with such a behavior are known; these solutions correspond to the modes of continuous

spectrum [1, 3], with their physical relevance being still an open question.

The second approach uses a mapping that transform a system of functions with well-

established approximation properties on a finite interval (for example, the Lagrange in-

terpolation polynomials associated with the Chebyshev points) into that on a half-line

[4, 10]. The approximation properties of such mapped systems of functions are discussed

in [11]. From [12, 13] onwards, various mappings are compared for model problems. This

approach is used in hydrodynamic and aerodynamic applications [10, 14, 15].

The third approach [11, 16] uses the Laguerre functions L̂k(y) = Lk(y) exp(−y/2),
where Lk is the Laguerre polynomial of degree k. As to our knowledge, spectral methods

based on the Laguerre functions have not been previously used for studying boundary-

layer instabilities.

In [11] the convergence of the spectral–Galerkin method based on either mapped sys-
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tems of polynomials or the Laguerre functions is studied theoretically. Upper bounds

on the approximation errors are obtained for both type of methods and then verified on

model elliptic equations. Note that these bounds are obtained in different norms. For

the method based on the Laguerre functions, the norm is the usual (i.e., with the unit

weight function) L2-norm over the half-line; this norm has a clear physical interpretation

in the study of boundary-layer instabilities — it is the disturbance kinetic energy density.

For the method based on mapped systems of polynomials, that is the weighted norm

determined by the mapping. The work [11] provides a number of examples, where either

the first method converges faster than the second one, or the second one converges faster

than the first one, or both methods show close results. It is of interest to compare these

methods for boundary-layer stability problems.

The present work is organized as follows. In Section 2, we describe the approximation

by the Galerkin–collocation method based on the Laguerre functions of the equations

governing evolution of small-amplitude disturbances of viscous incompressible boundary

layers. Section 3 devotes to a robust numerical implementation of this method. Section

4 compares the proposed method with the collocation method with mappings for the

stability analysis of the Blasius and Ekman layers. Section 5 summarizes the results.

Throughout this paper, ∥ · ∥2 denotes the 2-norm for vectors and matrices, the super-

scripts T and ∗ denote the symbols of transposition and conjugate transposition respec-

tively, and δij denotes the Kronecker delta.

2. Approximation of problems arising within the sta-

bility analysis of boundary layers

In the Cartesian coordinates, x (streamwise), y (wall-normal) and z (spanwise), con-

sider a flow of a viscous incompressible fluid over the flat surface y = 0. Against the

background of a main laminar flow, we consider three-dimensional small-amplitude time-

dependent disturbances which are represented as follows

(u′, v′, w′, p′) = (u, v, w, p)eiαx+iγz, (2.1)

where u, v, w, and p are the complex-valued amplitudes of the streamwise, wall-normal

and spanwise velocity components, and the pressure, respectively. The amplitudes depend

only on y and t. Here t is the time, α is the streamwise wavenumber, and γ is the spanwise

wavenumber.
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Two problems are considered in this paper to present and compare approximation

methods in the wall-normal direction y.

The first problem is the temporal stability analysis of the Blasius layer under the local-

parallel assumption. In this case, it is assumed that the linear dimensionless equations

governing the evolution of small-amplitude disturbances are as follows

∂u

∂t
+ iαUBu+

dUB

dy
v + iαp− 1

Re
∆αγu = 0,

∂v

∂t
+ iαUBv +

∂p

∂y
− 1

Re
∆αγv = 0,

∂w

∂t
+ iαUBw + iγp− 1

Re
∆αγw = 0,

iαu+
∂v

∂y
+ iγw = 0,

(2.2)

where Re is the Reynolds number, and ∆αγ = −α2+∂2/∂y2−γ2. The streamwise velocity

UB(y) = df/dy of the main flow depends only on y; and f satisfies the Blasius equation

2
d3f

dy3
+

d2f

dy2
f = 0, f(0) = f ′(0) = 0, f ′(+∞) = 1,

which can be solved by standard numerical methods (see, e.g., references in [3]). A

physical interpretation of the equations (2.2) as well as the definition of the Reynolds

number can be found in [2, 3].

The second problem is the temporal stability analysis of the Ekman layer. In this

case, it is assumed that the linear dimensionless equations governing the evolution of

small-amplitude disturbances are as follows

∂u

∂t
+ (iαUE + iγWE)u+

dUE

dy
v + iαp− 1

Re
∆αγu =

1

Ro
w,

∂v

∂t
+ (iαUE + iγWE)v +

∂p

∂y
− 1

Re
∆αγv = 0,

∂w

∂t
+ (iαUE + iγWE)w +

dWE

dy
v + iγp− 1

Re
∆αγw = − 1

Ro
u,

iαu+
∂v

∂y
+ iγw = 0,

(2.3)

where Re is the Reynolds number, and Ro = Re/2 is the Rossby number. The streamwise

velocity UE(y) = 1− cos(y)e−y and spanwise velocity WE(y) = sin(y)e−y of the main flow

depend only on y and are known analytically. A physical interpretation of the equations

(2.3) as well as the definition of the Reynolds and Rossby numbers can be found in [14].

Within the stability analysis, the velocity components satisfy the boundary conditions

(1.1) for both considered problems. In addition, we consider the disturbance kinetic
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energy density

E =

+∞∫
0

|u|2 + |v|2 + |w|2 dy (2.4)

as a physically-relevant measure of disturbance magnitude.

2.1. Approximation by the Galerkin–collocation method based

on the Laguerre functions

Let us consider the equations (2.2) under the boundary conditions (1.1). Suppose

L2 is the space of complex-valued functions square-integrable over the half-line y > 0.

This space is equipped with the inner product and the norm that is similar to the energy

functional (2.4). Suppose H0 is the space, whose elements satisfy zero boundary condition

at y = 0 and belong to L2 together with their first derivatives. Let us multiply the

momentum equations by fu, fv, fw ∈ H0 and the continuity equation by fp ∈ L2; and

integrate these equations over the half-line y > 0, using the integration by parts. Thus,

we obtain the weak form of the equations (2.2). We seek for u, v, w ∈ H0 and p ∈ L2 (at

any fixed t) such that the weak form of the equations (2.2) is valid for any fu, fv, fw ∈ H0

and fp ∈ L2.

Let Lk be the Laguerre polynomial of degree k. Suppose 0 = y0 < · · · < yn is the

Laguerre–Gauss–Radau grid, whose non-zero nodes are the roots of the derivative of Ln+1.

The Laguerre–Gauss–Radau quadrature formula

+∞∫
0

f(y)e−y dy ≈
n∑

i=0

f(yi)κi, κi =
1

(n+ 1)L2
n(yi)

associated with this grid is exact for any polynomial of degree 2n or less [17]. Then, the

following quadrature formula is valid

+∞∫
0

f(y) dy ≈
n∑

i=0

f(yi)κ̂i, κ̂i = κie
yi . (2.5)

Suppose ℓi(y) are the Lagrange interpolation polynomials for the Laguerre–Gauss–

Radau grid. Likewise, ℓ̄i(y) are those for the grid y1 < · · · < yn. It is easy to see that

ℓi(y) =
Ln(y)− Ln+1(y)

(y − yi)Ln(yi)
. (2.6)
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In the sequel, functions of the form

ψi(y) = ℓi(y)e
−(y−yi)/2, i = 0, . . . , n,

ϕi(y) = ℓ̄i(y)e
−(y−yi)/2, i = 1, . . . , n,

(2.7)

are called the Laguerre interpolation functions. The functions ψi(y) at 1 ≤ i ≤ n equal

zero at y = 0. These functions are used as trial functions for the velocity components,

and as test functions for the momentum equations. The functions ϕi(y) are used as

trial functions for the pressure, and as test functions for the continuity equation. The

quadrature formula (2.5) is used for computing the inner products.

Let us point out the approximation of some operators in the weak form of (2.2).

Let gv be the approximation of a function from H0 by ψi (i = 1, . . . , n), and gv be the

column whose elements are the corresponding expansion coefficients. Likewise, let gp be

the approximation of a function from L2 by ϕi (i = 1, . . . , n), and gp be the column whose

elements are the corresponding expansion coefficients. Then, the following equalities are

valid
+∞∫
0

dgv
dy

dgv
dy

dy =
(
DTKDgv, gv

)
, (2.8)

+∞∫
0

gp
dgv
dy

dy =
(
DTKPgp, gv

)
,

+∞∫
0

dgv
dy

gp dy =
(
PTKDgv, gp

)
, (2.9)

where the Euclidean inner product is denoted by the braces, K is the diagonal matrix

of order n + 1 whose entries are the quadrature weights (2.5), D is the matrix of size

(n+1)×n whose entries are the derivatives of ψi(y) (i = 1, . . . , n) at the Laguerre-Gauss-

Radau nodes, and P is the matrix of size (n+1)×n whose entries are the values of ϕi(y)

at the Laguerre-Gauss-Radau nodes. Note that the equalities (2.8), (2.9) hold since the

quadrature (2.5) is exact for any function of the form p(y)e−y, where p(y) is a polynomial

of degree 2n or less. The matrix D is called the differentiation matrix. The matrix P is

called the projection matrix; only ϕi(y0) have to be computed since ϕi(yj) = δij at the

interior nodes by definition. The computation of the matrices D and P is discussed in

Section 3.

As a result of the described approximation of the equations (2.2), we obtain a system

of ordinary differential and algebraic equations of the form

dv

dt
= Jv +Gp,

Fv = 0,

(2.10)
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where v is the 3n-component column, whose elements represent the values of the velocity

components at the interior grid nodes. In (2.10), v is additionally scaled such that ∥v∥22
correspond to the energy functional (2.4). Here J, G, and F are matrices of size 3n× 3n,

3n×n, and n× 3n, respectively. The ordinary differential equations in (2.10) correspond

to the momentum equations, while the algebraic equations correspond to the continuity

equation. From (2.8) and (2.9), it is easy to see that the discrete analogue of the Laplace

operator is a symmetric negative-definite matrix as well as the equality F = −G∗ is valid.

Similar to the polynomial interpolation, approximation properties of the functions

(2.7) are determined by the Lebesgue function Φ(y) and the Lebesgue constant LΦ

Φ(y) =
n∑

i=0

|ψi(y)|, LΦ = max
y>0

Φ(y). (2.11)

At given n, the function Φ(y) is equal to 1 at y = yi and decays exponentially at y > yn.

Figure 1 shows the function Φ(y) at n = 32; it is qualitatively the same at other n. As for

the polynomial interpolation, the Lebesgue constant LΦ increases with n. Figure 1 shows

that the increase of LΦ is at logarithmic rate. In addition, the increase of LΦ is compared

to the increase of the Lebesgue constant for polynomial interpolation at the Chebyshev

points. It is shown that the values of LΦ are slightly smaller, while the growth rate is

similar.

2.2. Scaling for the stability analysis of boundary layers

Within the boundary-layer stability analysis, there are two characteristic wall-normal

length scales — the thickness of the laminar boundary layer yBL, and the finite height

ymax such that disturbances might be regarded as negligible at y > ymax. The value

of yBL can be found before the stability analysis, using only the main flow data (see

introduction in [18] and references therein). In contrast, the value of ymax can be found

only within the stability analysis by studying the convergence of the sought disturbances

with increasing ymax. We also note that some disturbances (e.g., Tollmien–Schlichting

waves) can extend significantly above the boundary layer, i.e., ymax can be much larger

than yBL. This physical discussion leads to the following requirements. The grid nodes

should be separated such that both the boundary-layer domain (0 < y < yBL) and its

outside are covered. In addition, as n increases, both the number of nodes inside and

outside the boundary layer must increase.

Therefore, the Laguerre-Gauss-Rado grid 0 = y0 < · · · < yn should be scaled, since
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these nodes are distributed along the entire half-line y ≥ 0, with yn increasing with n.

For example, one can satisfy these requirements by the scaling

yi := yi/σ, κ̂i := κ̂i/σ, ψ′
j(y) := σψ′

j(y), (2.12)

where σ = ym/yBL is a scaling factor, and m is the integer part of n/2. This scaling means

that the half of the grid nodes lies inside the boundary layer. An advantage of (2.12) is

that this scaling does not depend on ymax. Note that this is not the only possible way

of scaling. For example, one can additionally adjust the parameter m for a particular

problem.

Figure 2 shows the Laguerre–Gauss–Radau nodes yi and weights κ̂i under the scaling

(2.12) at various n with yBL being fixed. Note that yn increases slowly with n and κ̂n

decreases with n under the scaling (2.12).

2.3. Approximation by the collocation method with mappings

Let us briefly describe the approximation of the equations (2.2) under the boundary

conditions (1.1) by collocation method.

Let −1 = s0 < · · · < sn+1 = 1 be the Chebyshev points, i.e., si = − cos (πi/(n+ 1)).

Suppose li(s) are the Lagrange interpolation polynomials for this grid, and l̄i(s) are those

for the grid s1 < · · · < sn. Let y = g(s) (s = g−1(y)) be a smooth monotonic function

that ensures an one-to-one mapping between the interval −1 ≤ s ≤ 1 and the half-line

y ≥ 0 such that g(−1) = 0, g(0) = yBL, and g(1) = +∞. Such a mapping guarantees that

the half of the grid nodes ygi = g(si) lies inside the boundary layer, similarly to the scaling

(2.12). Then we use the functions ψg
i (y) = li(g

−1(y)) as basis functions for the velocity

components and the functions ϕg
i (y) = l̄i(g

−1(y)) as basis functions for the pressure. The

functions ψg
i (y) at 1 ≤ i ≤ n satisfy zero boundary conditions at y = 0 and y → +∞.

The approximation properties of such functions are discussed in [11].

For computing the energy functional (2.4), we use the quadrature formula

+∞∫
0

f(y) dy =

1∫
−1

f(g(s))
dg

ds
ds ≈

n∑
i=0

f(ygi )κ̂i,

where κ̂i = κi(dg/ds(si)), and κi are the weights of the Clenshaw–Curtis quadrature [6].

This formula is exact for any functions of the form l(g−1(y)), where l is a polynomial of

degree n or less. The values of the derivatives of ψg
i (y) and ϕg

i (y) at the grid nodes can

be computed by the procedures from [7] or [8], coupled with the chain rule.
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As a result of the described approximation of the equations (2.2), we obtain a system of

ordinary differential and algebraic equations of the form (2.10). Note that the collocation

method does not ensure that the discrete analogue of the Laplace operator is a symmetric

negative-definite matrix. In addition, the equality F = −G∗ does not hold, in general.

As a mapping, the following ones are used in the present paper

g(s) = yBL tan
(π
4
(1 + s)

)
, g−1(y) =

4

π
arctan

(
y

yBL

)
− 1, (2.13)

g(s) = yBL
1 + s

1− s
, g−1(y) =

y − yBL

y + yBL

, (2.14)

g(s) = − yBL

ln(2)
ln

(
1− s

2

)
, g−1(y) = 1− 2−y/yBL+1. (2.15)

The algebraic (2.14) and exponential (2.15) mappings are known [4]; and the mapping

with the tangent function (2.13) is currently implemented in LOTRAN software package

[15], which is designed for predicting an onset of laminar–turbulent transition in industrial

applications.

Figure 3 shows the streamwise velocity UB(y) of the Blasius layer and the streamwise

UE(y) and spanwise WE(y) velocities of the Ekman layer. For both considered main flows,

the typical values of yBL (see, [9, 14]) are marked, while the values of ymax correspond to the

upper limits of the subfigures. In addition, Figure 3 shows the Laguerre–Gauss–Radau

nodes under the scaling (2.12), and the grid nodes ygi obtained by either the mapping

(2.13), (2.14), or (2.15).

3. Numerical implementation of the Galerkin–collocation

method

To implement the approximation method described in Section 2.1, one has to compute

the nodes yi and weights κ̂i of the quadrature formula (2.5), the derivatives of ψi(y) (2.7)

at the grid nodes, and the values of ϕi(y) (2.7) at y = 0. In this section, we provide an

algorithm for computing these quantities; the proposed algorithm is stable, including the

case of large n.

By definition [19], the Laguerre polynomials are orthogonal in the inner product

+∞∫
0

Lk(y)Lm(y)e
−y dy = δkm
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with the exponential weight function. They satisfy the following three-term relations

L0(y) = 1, L1(y) = 1− y,

−kLk−1(y) + (2k + 1)Lk(y)− (k + 1)Lk+1(y) = yLk(y),
(3.1)

and can be represented as

Lk(y) =
ey

k!

dk
(
e−yyk

)
dyk

. (3.2)

In addition, the Laguerre polynomials satisfy the relations

L′
n+1(y)− L′

n(y) = −Ln(y), (3.3)

yL′
n+1(y) = (n+ 1)(Ln+1(y)− Ln(y)), (3.4)

whose derivation from (3.1) and (3.2) is straightforward, see [20].

It is known [17] that the Laguerre–Gauss–Radau nodes yi are eigenvalues of the sym-

metric tridiagonal matrix

1 −1 0

−1 3 −2
. . . . . . . . .

−(n− 1) 2n− 1 −n
0 −n n


. (3.5)

This allows for the robust computation of yi.

3.1. Some results

The quadrature weights κ̂i (2.5) are determined by Ln(yi), which can be computed by

the three-term relations (3.1). At large n and i, the values of |Ln(yi)| appear to be very

large (up to the machine infinity), and the values of κi appear to be very small (up to the

machine zero). Therefore, the stable computation of κ̂i = κie
yi is an issue. At the same

time, the values of κ̂i are bounded from below since the Laguerre functions are bounded,

|L̂n(y)| ≤ 1, at any n and y [16].

We propose to compute the weights κ̂i (2.5) by

κ̂i =
exp (yi − 2 ln(|Ln(yi)|))

n+ 1
, (3.6)

with an additional scaling at computing Ln(yi) by (3.1). If we have |Lk(yi)| > c at some

k < n, where c is a given threshold parameter, then we divide the previously computed
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Lk(yi) and Lk−1(yi) by c and keep using the three-term relation. This scaling by c is

done whenever the result exceeds c in absolute value. As a result, we have ln(|Ln(yi)|) =
nc ln(c) + ln(|L̃n(yi)|), where nc is the number of fractions done, and L̃n(yi) is the value

obtained by the procedure. Numerical experiments show the overall procedure is robust

to round-off errors at large n and i; the computed values of κ̂i up to n = 512 are shown

in Figure 2.

Let us consider the numerical interpolation by the Laguerre interpolation functions

(2.7). The following statement is valid.

Lemma 1. Suppose the function f(y) is equal to fi at some grid 0 ≤ ỹ1 < · · · < ỹn.

Then, the interpolant In(f) constructed with the functions of the form

ℓ̃i(y)e
−(y−ỹi)/2,

where ℓ̃i(y) are the Lagrange interpolation polynomials for this grid, is represented as

In(f) =

(
n∑

i=1

λ̂i
y − ỹi

fi

)/( n∑
i=1

λ̂ie
(y−ỹi)/2

y − ỹi

)
, (3.7)

where

λ̂i =
eỹi/2∏

k ̸=i

(ỹi − ỹk)
.

Proof. It is straightforward that the following representation

In(f) = ℓ̃(y)e−y/2

n∑
i=1

λ̂i
y − yi

fi (3.8)

is valid, where ℓ̃(y) =
n∏

i=1

(y − ỹi). Then, (3.8) and

1 ≡
n∑

i=1

ℓ̃i(y) = ℓ̃(y)
n∑

i=1

λ̂ie
−ỹi/2

y − ỹi
,

end the proof.

As for the polynomial interpolation (see, e.g., [6]), the representation (3.7) is called

the barycentric form of the interpolant, while λ̂i are called the barycentric weights. The

barycentric weights can be computed in a robust way due to the following statement.

Theorem 1. Suppose 0 = y0 < · · · < yn are the Laguerre–Gauss–Radau nodes, and κ̂i

are the quadrature weights in (2.5). Then, the barycentric weights λ̂i for this grid, and

those λ̂0i for the grid y1 < · · · < yn, are represented as

λ̂i = c(n)(−1)i
√
κ̂i, (3.9)
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λ̂0i = c(n)(−1)iyi
√
κ̂i, (3.10)

where

c(n) =
(−1)n

√
n+ 1

(n+ 1)!
.

Proof. Let us prove (3.10) first. The polynomial ℓ0(y) =
n∏

i=1

(y − yi) has the same roots

as L′
n+1(y); therefore, these polynomials differ only by a multiplicative factor. Using that

the leading coefficient of Ln+1(y) is equal to (−1)n+1/(n+ 1)!, we obtain that

λ̂0i =
eyi/2

ℓ′0(yi)
=

eyi/2

(−1)n+1n!L′′
n+1(yi)

. (3.11)

For the interior Laguerre–Gauss–Radau nodes, it is valid that

yiL
′′
n+1(yi) = −(n+ 1)L′

n(yi) = −(n+ 1)Ln(yi), (3.12)

where the left equality is obtained by taking the first derivative of (3.4), and the right one

follows from (3.3). Substituting (3.12) into (3.11) and using the definition of κ̂i (2.5), we

obtain the statement (3.10) up to a sign. To end the proof, note that λ̂0i have to change

the sign, with λ̂0n > 0.

To prove (3.9), note that

ℓ(y) =
n∏

i=0

(y − yi) = yℓ0(y),

and therefore

λ̂i =
eyi/2

ℓ′(yi)
=

eyi/2

ℓ0(yi) + yiℓ′0(yi)
. (3.13)

For the interior grid nodes the first term in the denominator of (3.13) equals 0, while the

second term is expressed in terms of λ̂i; those lead to (3.9) at i > 0. For the boundary

node y0 = 0, we have ℓ(0) = (−1)n+1n!L′
n+1(0). To end the proof, note that the Laguerre

polynomials satisfy L′
k(0) = −k, and therefore λ̂00 = (−1)n/(n+ 1)!.

Note that the statement similar to (3.9) is proven in [21] for the polynomial interpolation

for the Laguerre–Gauss–Radau grid.

The barycentric weights λ̂i and λ̂0i contain the multiplicative factor c(n), which decays

at very large rate with increasing n. At some n, this factor becomes smaller than the

machine zero. However, there is no need to compute c(n) for the interpolant representation

(3.7), since the barycentric weights are involved both in the nominator and denominator.

Thus, the interpolant representation (3.7) with the barycentric weights computed by

12



Theorem 1 allow for the numerical interpolation from the Laguerre–Gauss-Radau grid to

another grid. In addition, substituting (3.10) into (3.7) at the point y = 0, the following

corollary is obtained.

Corollary 1. Suppose 0 < y1 < · · · < yn are the interior Laguerre–Gauss–Radau nodes,

κ̂j are the quadrature weights in (2.5) corresponding to these nodes, and ϕj(y) are the

Laguerre interpolation functions (2.7) for this grid. Then,

ϕj(0) =
(−1)j

√
κ̂j

n∑
j=1

(−1)j
√
κ̂je−yj/2

.

One can also derive the explicit formula for the derivatives of the interpolation Laguerre

functions ψj(y) (2.7) at the Laguerre–Gauss–Radau nodes. Note that such formula is given

in [16], Eq. (3.17), but without a proof.

Theorem 2. Suppose 0 = y0 < · · · < yn are the Laguerre–Gauss–Radau nodes, κ̂i are the

quadrature weights in (2.5), and ψj(y) are the Laguerre interpolating functions (2.7) for

this grid. Then

ψ′
j(yi) =



(−1)i+j
√
κ̂j√

κ̂i(yi − yj)
, i ̸= j,

0, i = j ̸= 0,

−n+ 1

2
, i = j = 0.

Proof. The derivative of the function ψj(y) (2.7) is as follows

ψ′
j(y) =

(
ℓ′j(y)−

1

2
ℓj(y)

)
e−(y−yj)/2, (3.14)

where ℓj(y) are the Lagrange interpolation polynomials. By (2.6), it is valid that

(y − yj)ℓj(y) =
Ln(y)− Ln+1(y)

Ln(yj)
. (3.15)

By taking the derivative of (3.15), we obtain that

ℓ′j(yi) =
Ln(yi)

(yi − yj)Ln(yj)

at i ̸= j. Substituting this expression to (3.14) and using the result for the barycentric

weights (3.9), we prove the theorem at i ̸= j.

By taking the second derivative of (3.15), we obtain that

2ℓ′j(yj) =
L′
n(yj)

Ln(yj)
.

13



At y0 = 0, it is valid that Ln(0) = 1 and L′
n(0) = −n. At other nodes yj, it is valid that

L′
n(yj) = Ln(yj) (3.3). Thus,

2ℓ′j(yj) =

1, j ̸= 0.

−n, j = 0.
(3.16)

The substitution of (3.16) into (3.14) ends the proof at i = j.

To sum up, the Galerkin–collocation method based on the Laguerre functions can

be implemented as follows. The Laguerre–Gauss–Radau nodes yi are computed as the

eigenvalues of (3.5). The quadrature weights κ̂i associated with this grid are computed

by (3.6) with an additional scaling while using the three-term relations (3.1). Then, the

values and derivatives of the functions (2.7) at the grid nodes are computed, see Corollary

1 and Theorem 2. For the interpolation of a grid function given at the nodes yi to another

grid, the barycentric formula (3.7) is used, where the barycentric weights are computed by

Theorem 1; the multiplicative factor c(n) is common for all barycentric weights at given

n, therefore there is no need to compute it. The proposed algorithm performs robustly,

including the case of large n.

4. Numerical experiments

As a result of the approximation of either the system (2.2) or (2.3) under the bound-

ary conditions (1.1) by either the Galerkin–collocation method from Section 2.1 or the

collocation method from Section 2.3, we obtain a differential-algebraic system of the form

(2.10).

Note that v lies in the kernel of F. Let QF be a rectangular matrix, whose columns

form an orthonormal basis in the kernel of F. Likewise, let QG be a rectangular matrix,

whose columns form an orthonormal basis in the kernel of G∗. Under an additional

assumption that both F, G and Q∗
GQF are of full rank, the system (2.10) is equivalent to

the system of ordinary differential equations

dq

dt
= Hq, (4.17)

where q = QFv, and H = (Q∗
GQF )

−1Q∗
GJQF . The detailed justification of such a reduc-

tion of differential-algebraic systems is given in [22]; the assumption made is valid for the

considered problems. Note that the approximation by the Galerkin–collocation method
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ensures that F = −G∗, and therefore QF = QG. It is also worth noting that ∥q∥22 = ∥v∥22
is the discrete analogue of the energy functional (2.4).

Within the numerical stability analysis, the eigenvalue of H with the largest real

part is of the most interest [2, 3]. This eigenvalue is called the leading eigenvalue, and

the corresponding eigenvector is called the leading eigenvector; we denote the leading

eigenvalue by λmax. The another quantity of physical interest [2, 3] is

Γmax = max
0≤t≤T

∥ exp{tH}∥22,

which is called the maximum energy amplification. The quantity Γmax represents the

maximum possible growth of the dusturbance kinetic energy density at given time period

t ∈ [0, T ]. In case the matrix H is non-normal, the value of Γmax might significantly

exceed the growth of the leading eigenvector exp (2λmaxT ) [2, 3]; in this case, the initial

disturbance at which Γmax is achieved (which is called the optimal disturbance [2, 3])

usually differs from the leading eigenvector. The maximum energy amplification Γmax can

be computed by the efficient matrix algorithm [23] based on a low-rank approximation;

this algorithm guarantees the result with a given accuracy.

To compare the approximation methods, we study the convergence of both scalar

characteristics λmax and Γmax. Comparing the methods by the convergence of vector

characteristics, namely either the leading eigenvector or the optimal disturbance, could

not be done quantitatively due to additional errors from interpolation from one grid to

another.

For the considered test problems, the stability analysis can be performed only numer-

ically. To establish the referential values λ̂max and Γ̂max, we set the artificial boundary

ymax with zero boundary conditions for the velocity components at y = ymax and then

approximate the equations by the Galerkin–collocation method with the Lagrange inter-

polation polynomials for the Gauss–Lobatto grid as trial and test functions. The approx-

imation properties of these basis functions are well-established [4], while the method was

widely used for hydrodynamic stability problems considered on finite domains. Therefore,

this method is reliable that is the most important for obtaining referential values. For

boundary-layer stability problems, this method is certainly inefficient, since the Gauss–

Lobatto nodes are refined both to y = 0 and y = ymax, while the value of ymax has to be

tuned manually. Tracking the convergence of the referential solution by increasing n and

ymax, we achieve the convergence of λ̂max and Γ̂max up to a desired precision.

As the first test problem, we perform temporal stability analysis of the Ekman layer
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(2.3). The Ekman layer could be considered as the simplest model of atmospheric bound-

ary layers, with its stability being studied in detail (see [14] and references therein). Using

the results of [14], we choose the parameter values as Re = 500, yBL = 5, α = −|k| sin(ε),
γ = |k| cos(ε), and T = 50, where |k| = 0.5, ε = π/9. The referential values of the lead-

ing eigenvalue λ̂max = 0.02375517 + 0.026959526i and the maximum energy amplification

Γ̂max = 207.14602 are computed at ymax = 20 and n = 128.

Figure 4 demonstrates the relative errors at computing λmax and Γmax for various

approximation methods. All methods show an exponential convergence rate of λmax with

increasing n. However, only the Galerkin–collocation method based on the Laguerre

functions shows an exponential convergence rate of Γmax. Note that Γmax converges slightly

faster than λmax for this method. It is also worth noting that there are no significant

differences between collocation methods at various mappings. Additional experiments

not presented in this paper show that these findings remain qualitatively the same at

increasing or decreasing the Reynolds number.

As the second test problem, we perform temporal stability analysis of the Blasius layer

(2.2). This main flow could be considered as the simplest model of aerodynamic boundary

layers, with its stability being studied in detail (see [2, 3] and references therein). Using

the results of [9], we choose the parameter values as Re = 999, α = 0.25, and γ = 0

for computing λmax; and the parameter values Re = 999, α = 0.3, γ = 1, T = 50 for

computing Γmax. The typical boundary-layer thickness is yBL = 4.27. The referential

values of the leading eigenvalue λ̂max = 0.00213694 − 0.08843026i and the maximum

energy amplification Γ̂max = 279.334811 are computed at ymax = 40 and n = 256.

Figure 5 demonstrates the relative errors at computing λmax and Γmax for various

approximation methods. The collocation method shows an exponential convergence rate

of λmax with increasing n; and there are no significant differences between mappings used.

In contrast, for the Galerkin–collocation method based on the Laguerre functions, the

accuracy that can be achieved is limited; nevertheless, the obtained accuracy might be

more than enough in applications. This issue is remedied by choosing a larger yBL, that

is also shown in Figure 5. One can also improve the scaling (2.12) by increasing the share

of the nodes outside the boundary layer.

As for the Ekman layer, the Galerkin–collocation method based on the Laguerre func-

tions shows an exponential convergence rate of Γmax, while the collocation method leads

to a slower convergence of Γmax. This disadvantage of the collocation method appears

to be irremediable; and the reason is an ill approximation of the operator d2/dy2, which
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leads to the presence of slowly damped unphysical solutions. The basis for this conclusion

are as follows. First, it is observed that convergence to the referential value Γ̂max for the

collocation method is from above, i.e., Γmax > Γ̂max. Second, let us consider the discrete

analogue of the operator d2/dy2 on the half-line under zero boundary conditions at y = 0

and y = +∞; denote this matrix by L. The collocation method, in general, does not

ensure the symmetry of L, although in this case it provides negative definiteness. Never-

theless, the matrix L resulted as the approximation by the collocation method has a large

condition number (e.g., of order 109 at n = 32 at the mapping (2.13)), and the spectrum

of L contains several very small in absolute value negative eigenvalues corresponding to

strongly oscillating eigenvectors. For comparison, L has the conditional number of order

105 at n = 32, when approximated by the Galerkin–collocation method based on the

Laguerre functions.

5. Summary

This paper proposes the Galerkin–collocation method based on the Laguerre functions

for approximating spectral and boundary-value problems arising in studying boundary-

layer instabilities. These problems considered on the half-line y > 0, where y is the

wall-normal coordinate. The robust numerical implementation of this method is pro-

posed (see Section 3), including the procedure for computing the weights of the Laguerre–

Gauss–Radau quadrature formula, the explicit expressions for values and derivatives of

the Laguerre interpolation functions at the grid nodes, and the procedure for numerical

interpolation from the Laguerre–Gauss–Radau grid to another grid.

Within temporal stability analysis of the Blasius and Ekman layers, the proposed

method is compared to the collocation method with mappings; the latter method is often

used for numerical analysis of boundary-layer instabilities. The comparison is made at

computing both the leading eigenvalue λmax and the maximum energy amplification Γmax.

It is shown that both type of methods show an exponential convergence rate of λmax; and

differences between the methods are insignificant. However, the Galerkin–collocation

method based on the Laguerre functions shows an exponential convergence rate of Γmax,

while the collocation method leads to a slower convergence of this quantity. It is shown

that Γmax converges faster than λmax for the Galerkin–collocation method based on the

Laguerre functions.

The Galerkin–collocation method based on the Laguerre functions might be success-

17



fully applied as the wall-normal approximation for more complex boundary-layer stability

problems (see the recent work [24]).
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Figure 1: On the left: the Lebesgue function Φ(y) (2.11) at n = 32. The Laguerre–

Gauss–Radau nodes are marked with green dots. On the right: the increase of LΦ (green

solid) with n, and that of the Lebesgue constant for the polynomial interpolation for the

Chebyshev grid (black dashed).

Figure 2: On the left: the Laguerre–Gauss–Radau nodes under the scaling (2.12) at

fixed yBL = 5 and at n = 2k, where k = 4, . . . , 9. The independent variable y is stretched

along the vertical axis. On the right: the quadrature weights κ̂i (2.5) under the scaling

(2.12) at the same yBL and n.

Figure 3: The independent variable y is along the vertical axis. On the left: the

Blasius velocity profile UB(y) (yBL = 4.27, ymax = 40). On the right: the Ekman velocity

profiles, UE(y) and WE(y) (yBL = 5, ymax = 20). The Laguerre–Gauss–Radau nodes under

the scaling (2.12) (green dots) and the Chebyshev points under the mappings (2.13),

(2.14), and (2.15) (red, blue and pink dots, respectively) at n = 32.

Figure 4: The relative error at computing λmax (on the left) and Γmax (on the right)

with increasing n for the Ekman layer. Results for the Galerkin–collocation method

based on the Laguerre functions with scaling (2.12) are marked with green. Those for the

method used to obtain referential values are marked with black. Those for the collocation

methods with mappings (2.13), (2.14) and (2.15) are marked with red, blue and pink,

respectively.

Figure 5: The relative error at computing λmax (on the left) and Γmax (on the right)

with increasing n for the Blasius layer. The colors mean the same as for Figure 4. In

addition, results for the Galerkin–collocation method based on the Laguerre functions

with scaling (2.12) are shown at larger yBL = 5.5 (green dotted).
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