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1. Introduction

Three-dimensional small-amplitude disturbances against a main laminar flow a re of
interest in numerical studies of boundary-layer instabilities. Equations governing the
evolution of such disturbances are considered on the half-line y > 0, where y is the wall-

normal coordinate, with the boundary conditions

u=v=w=0 at y=0y— +0 (1.1)

for the velocity components u, v and w (see, e.g., [|-3]). The boundary conditions (1.1)
represent the no-slip condition at the flow-exposed surface y = 0 and decaying of distur-
bances at far distance from the surface. This paper devotes to approximations on y of
such problems.

Spectral methods, including collocation and Galerkin—collocation methods, are a good

choice for the approximation of governing equations, since the equations are linear while
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sought disturbances are smooth functions of y. Within the collocation method, the so-
lution is approximated by a series of infinitely-differentiable functions with a non-finite
supply; and the expansion coefficients are determined by requiring the equations to be
satisfied at given grid nodes called collocation points. Within the Galerkin—collocation
method, the equations are approximated in the weak form, Lagrange interpolation func-
tions associated with some grid are used as trial and test functions, and the inner products
are computed by a high-order quadrature formula associated with the same grid. Note
that the Galerkin—collocation method is often called the Galerkin method with numerical
integration [1]. For problems considered on a finite interval, these spectral methods are
discussed, for example, in [1—(]; and procedures from the well-known software packages
[7, 8] can be used for the numerical implementation of these methods.

There are three main approaches for approximating problems considered on the half-
line y > 0 under the boundary conditions (1.1). The first one introduces an artificial
boundary at finite but large distance ymn.. from the surface. Then the equations are
considered on the interval (0, ymax) under some (e.g., zero or asymptotic [9]) boundary
conditions at y = ymax instead of those at infinity. Coupled with a spectral method
for the finite interval, this approach is widely used in numerical studies of boundary-layer
instabilities (see |3] and references therein). This approach requires choosing the sufficient
value of yn.x for a particular problem, and .« might depend on flow parameters. Note
that boundary conditions for the velocity components at any y = ymax might allow for
solutions that do not decay as y — +o00. For boundary-layer stability problems, solutions
with such a behavior are known; these solutions correspond to the modes of continuous
spectrum |1, 3], with their physical relevance being still an open question.

The second approach uses a mapping that transform a system of functions with well-
established approximation properties on a finite interval (for example, the Lagrange in-
terpolation polynomials associated with the Chebyshev points) into that on a half-line
[1, 10]. The approximation properties of such mapped systems of functions are discussed
in [11]. From [12, 13] onwards, various mappings are compared for model problems. This
approach is used in hydrodynamic and aerodynamic applications [10, 14, 15].

The third approach [11, 16| uses the Laguerre functions Ly(y) = Li(y) exp(—y/2),
where L; is the Laguerre polynomial of degree k. As to our knowledge, spectral methods
based on the Laguerre functions have not been previously used for studying boundary-
layer instabilities.

In [11] the convergence of the spectral-Galerkin method based on either mapped sys-



tems of polynomials or the Laguerre functions is studied theoretically. Upper bounds
on the approximation errors are obtained for both type of methods and then verified on
model elliptic equations. Note that these bounds are obtained in different norms. For
the method based on the Laguerre functions, the norm is the usual (i.e., with the unit
weight function) L£o-norm over the half-line; this norm has a clear physical interpretation
in the study of boundary-layer instabilities — it is the disturbance kinetic energy density.
For the method based on mapped systems of polynomials, that is the weighted norm
determined by the mapping. The work [I 1] provides a number of examples, where either
the first method converges faster than the second one, or the second one converges faster
than the first one, or both methods show close results. It is of interest to compare these
methods for boundary-layer stability problems.

The present work is organized as follows. In Section 2, we describe the approximation
by the Galerkin—collocation method based on the Laguerre functions of the equations
governing evolution of small-amplitude disturbances of viscous incompressible boundary
layers. Section 3 devotes to a robust numerical implementation of this method. Section
4 compares the proposed method with the collocation method with mappings for the
stability analysis of the Blasius and Ekman layers. Section 5 summarizes the results.

Throughout this paper, || - |2 denotes the 2-norm for vectors and matrices, the super-
scripts T' and * denote the symbols of transposition and conjugate transposition respec-

tively, and 6;; denotes the Kronecker delta.

2. Approximation of problems arising within the sta-
bility analysis of boundary layers

In the Cartesian coordinates, = (streamwise), y (wall-normal) and z (spanwise), con-
sider a flow of a viscous incompressible fluid over the flat surface y = 0. Against the
background of a main laminar flow, we consider three-dimensional small-amplitude time-

dependent disturbances which are represented as follows
(u', v, 0w, p) = (u,v,w,p)e = (2.1)

where u, v, w, and p are the complex-valued amplitudes of the streamwise, wall-normal
and spanwise velocity components, and the pressure, respectively. The amplitudes depend
only on y and t. Here t is the time, « is the streamwise wavenumber, and ~ is the spanwise

wavenumber.



Two problems are considered in this paper to present and compare approximation
methods in the wall-normal direction y.

The first problem is the temporal stability analysis of the Blasius layer under the local-
parallel assumption. In this case, it is assumed that the linear dimensionless equations

governing the evolution of small-amplitude disturbances are as follows

ou . dU ) 1
E +iaUgu + d—va +iap — EAMU =0,
1
@ + iaUgv + @ — —Ayv =0,
ot Jdy Re
(2.2)
ow

1
BN + iaUgw + iyp — ﬁAavw =0,

: ov .
lou + — +1yw = 0,
dy

where Re is the Reynolds number, and A, = —a?+09%/0y* —~*. The streamwise velocity
Ug(y) = df/dy of the main flow depends only on y; and f satisfies the Blasius equation

2+ =0 10 = £ =0, oo =1
which can be solved by standard numerical methods (see, e.g., references in [3]). A
physical interpretation of the equations (2.2) as well as the definition of the Reynolds
number can be found in |2, 3].
The second problem is the temporal stability analysis of the Ekman layer. In this
case, it is assumed that the linear dimensionless equations governing the evolution of

small-amplitude disturbances are as follows

0 dU; 1 1
0—1; + (iaUg + iYWg)u + d_yEU + iap — EAMU = Ew,
0 0 1
P (iaUg + iyWg)v + 9 _ — Ay v =0,
ot 0y Re (2.3)
d 1 1 '
%—I; + (iaUg + iyWg)w + M;Ev +iyp — EAmw = —ﬁu,

: v .
lou + — +iyw =0,
dy

where Re is the Reynolds number, and Ro = Re/2 is the Rossby number. The streamwise
velocity Ug(y) = 1 — cos(y)e™¥ and spanwise velocity Wg(y) = sin(y)e™? of the main flow
depend only on y and are known analytically. A physical interpretation of the equations
(2.3) as well as the definition of the Reynolds and Rossby numbers can be found in [14].

Within the stability analysis, the velocity components satisfy the boundary conditions

(1.1) for both considered problems. In addition, we consider the disturbance kinetic
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energy density

“+oo
£ / fuf? + Jof? + [P dy (2.4)
0

as a physically-relevant measure of disturbance magnitude.

2.1. Approximation by the Galerkin—collocation method based

on the Laguerre functions

Let us consider the equations (2.2) under the boundary conditions (1.1). Suppose
Lo is the space of complex-valued functions square-integrable over the half-line y > 0.
This space is equipped with the inner product and the norm that is similar to the energy
functional (2.4). Suppose H, is the space, whose elements satisfy zero boundary condition
at y = 0 and belong to £, together with their first derivatives. Let us multiply the
momentum equations by fy, fu, fu € Ho and the continuity equation by f, € Ly; and
integrate these equations over the half-line y > 0, using the integration by parts. Thus,
we obtain the weak form of the equations (2.2). We seek for u,v,w € Hy and p € L, (at
any fixed t) such that the weak form of the equations (2.2) is valid for any f,, fu, fu € Ho
and f, € L.

Let Ly be the Laguerre polynomial of degree k. Suppose 0 = yg < --- < vy, is the
Laguerre-Gauss—Radau grid, whose non-zero nodes are the roots of the derivative of L, 1.

The Laguerre-Gauss—Radau quadrature formula

+oo
T T S
0/ fy)e™ dy = ; Jimi, - wi = (n+1)L2(y:)

associated with this grid is exact for any polynomial of degree 2n or less [17]. Then, the

following quadrature formula is valid

+00 n
/ ) dy =Y fi)ki, &= e, (2.5)
0 i=0

Suppose ¢;(y) are the Lagrange interpolation polynomials for the Laguerre-Gauss—

Radau grid. Likewise, £;(y) are those for the grid y; < --- < y,. It is easy to see that

Ln(y) = Lunia(y)
(y - yi>Ln<yi) '

li(y) = (2.6)



In the sequel, functions of the form

Lily) = Li(y)e V2 i =0,...,n,
¢i(y) l@(y)e*(y*yi)/z, 1=1,...,n,

are called the Laguerre interpolation functions. The functions ¥;(y) at 1 < i < n equal

.

(2.7)

zero at y = 0. These functions are used as trial functions for the velocity components,
and as test functions for the momentum equations. The functions ¢;(y) are used as
trial functions for the pressure, and as test functions for the continuity equation. The
quadrature formula (2.5) is used for computing the inner products.

Let us point out the approximation of some operators in the weak form of (2.2).
Let g, be the approximation of a function from Hy by v; (i = 1,...,n), and g, be the
column whose elements are the corresponding expansion coefficients. Likewise, let g, be
the approximation of a function from Lo by ¢; (i = 1,...,n), and g, be the column whose

elements are the corresponding expansion coefficients. Then, the following equalities are

valid N
dgvdg’v T
dy = (DTKDg,. g,) . 2.8
/dy dy v=( &) %)
0
+oo p +°°d
[y =0 KPgs) . [ty = (PTRDgg)9)
0 0

where the Euclidean inner product is denoted by the braces, K is the diagonal matrix
of order n + 1 whose entries are the quadrature weights (2.5), D is the matrix of size
(n+1) x n whose entries are the derivatives of 1;(y) (i = 1,...,n) at the Laguerre-Gauss-
Radau nodes, and P is the matrix of size (n 4 1) x n whose entries are the values of ¢;(y)
at the Laguerre-Gauss-Radau nodes. Note that the equalities (2.8), (2.9) hold since the
quadrature (2.5) is exact for any function of the form p(y)e Y, where p(y) is a polynomial
of degree 2n or less. The matrix D is called the differentiation matrix. The matrix P is
called the projection matrix; only ¢;(yy) have to be computed since ¢;(y;) = d;; at the
interior nodes by definition. The computation of the matrices D and P is discussed in
Section 3.

As a result of the described approximation of the equations (2.2), we obtain a system

of ordinary differential and algebraic equations of the form

d
V:Jv+Gp,

d (2.10)
Fv =0,
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where v is the 3n-component column, whose elements represent the values of the velocity
components at the interior grid nodes. In (2.10), v is additionally scaled such that |v||3
correspond to the energy functional (2.4). Here J, G, and F are matrices of size 3n x 3n,
3n x n, and n x 3n, respectively. The ordinary differential equations in (2.10) correspond
to the momentum equations, while the algebraic equations correspond to the continuity
equation. From (2.8) and (2.9), it is easy to see that the discrete analogue of the Laplace
operator is a symmetric negative-definite matrix as well as the equality F = —G* is valid.
Similar to the polynomial interpolation, approximation properties of the functions

(2.7) are determined by the Lebesgue function ®(y) and the Lebesgue constant Le
O(y) = [i(y)l, Le=max®(y). (2.11)

i=0

y>0

At given n, the function ®(y) is equal to 1 at y = y; and decays exponentially at y > y,,.
Figure 1 shows the function ®(y) at n = 32; it is qualitatively the same at other n. As for
the polynomial interpolation, the Lebesgue constant Lg increases with n. Figure 1 shows
that the increase of Lg is at logarithmic rate. In addition, the increase of Lg is compared
to the increase of the Lebesgue constant for polynomial interpolation at the Chebyshev
points. It is shown that the values of L are slightly smaller, while the growth rate is

similar.

2.2. Scaling for the stability analysis of boundary layers

Within the boundary-layer stability analysis, there are two characteristic wall-normal
length scales — the thickness of the laminar boundary layer yg, and the finite height
Ymax Such that disturbances might be regarded as negligible at y > ynax. The value
of ypr, can be found before the stability analysis, using only the main flow data (see
introduction in [18] and references therein). In contrast, the value of yy., can be found
only within the stability analysis by studying the convergence of the sought disturbances
with increasing ymax. We also note that some disturbances (e.g., Tollmien—Schlichting
waves) can extend significantly above the boundary layer, i.e., ymax can be much larger
than ygr,. This physical discussion leads to the following requirements. The grid nodes
should be separated such that both the boundary-layer domain (0 < y < yg) and its
outside are covered. In addition, as n increases, both the number of nodes inside and
outside the boundary layer must increase.

Therefore, the Laguerre-Gauss-Rado grid 0 = yg < --- < vy, should be scaled, since

7



these nodes are distributed along the entire half-line y > 0, with y, increasing with n.

For example, one can satisfy these requirements by the scaling

Yi = yi/ga "%z = /%i/o-a %(?J) = O-w;(y)a (212)

where o = y,,/ypL is a scaling factor, and m is the integer part of n/2. This scaling means
that the half of the grid nodes lies inside the boundary layer. An advantage of (2.12) is
that this scaling does not depend on y,.. Note that this is not the only possible way
of scaling. For example, one can additionally adjust the parameter m for a particular
problem.

Figure 2 shows the Laguerre-Gauss—Radau nodes y; and weights k; under the scaling
(2.12) at various n with ygp, being fixed. Note that y, increases slowly with n and %,

decreases with n under the scaling (2.12).

2.3. Approximation by the collocation method with mappings

Let us briefly describe the approximation of the equations (2.2) under the boundary
conditions (1.1) by collocation method.

Let —1 =55 < -+ < $y41 = 1 be the Chebyshev points, i.e., s;, = — cos (wi/(n + 1)).
Suppose [;(s) are the Lagrange interpolation polynomials for this grid, and [;(s) are those
for the grid s; < -+ < s,. Let y = g(s) (s = ¢g~'(y)) be a smooth monotonic function
that ensures an one-to-one mapping between the interval —1 < s < 1 and the half-line
y > 0 such that g(—1) =0, g(0) = ypL, and g(1) = +00. Such a mapping guarantees that
the half of the grid nodes yf = ¢(s;) lies inside the boundary layer, similarly to the scaling
(2.12). Then we use the functions ¥{(y) = l;(¢~'(y)) as basis functions for the velocity
components and the functions ¢?(y) = l;(g~'(y)) as basis functions for the pressure. The
functions ¢{(y) at 1 < i < n satisfy zero boundary conditions at y = 0 and y — +o0.
The approximation properties of such functions are discussed in [11].

For computing the energy functional (2.4), we use the quadrature formula
“+o00 1 n
[ twds= [ 1)L ds =Y 1w
dS - i iy
0 -1 =

where 5; = 5,;(dg/ds(s;)), and 3¢ are the weights of the Clenshaw—Curtis quadrature [6].
This formula is exact for any functions of the form I(g~!(y)), where [ is a polynomial of
degree n or less. The values of the derivatives of ¢(y) and ¢7(y) at the grid nodes can

be computed by the procedures from [7] or [%], coupled with the chain rule.
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As aresult of the described approximation of the equations (2.2), we obtain a system of
ordinary differential and algebraic equations of the form (2.10). Note that the collocation
method does not ensure that the discrete analogue of the Laplace operator is a symmetric
negative-definite matrix. In addition, the equality F = —G* does not hold, in general.

As a mapping, the following ones are used in the present paper

4

g(s) = ypr, tan (Z(l + s)> , g '(y) = —arctan S - 1, (2.13)

4 0 YBL

I+s -1 Y — YBL
= = 2.14
9(s) YLy o Y (v) v+ upL’ (2.14)
YBL 1—s5 -1 —y/ypL+1
=By (=2 =1 — 2 v/umLtl 2.1

o) =2 (150) . o 215

The algebraic (2.14) and exponential (2.15) mappings are known [1]; and the mapping
with the tangent function (2.13) is currently implemented in LOTRAN software package
[15], which is designed for predicting an onset of laminar—turbulent transition in industrial
applications.

Figure 3 shows the streamwise velocity Ug(y) of the Blasius layer and the streamwise
Ug(y) and spanwise Wg(y) velocities of the Ekman layer. For both considered main flows,
the typical values of ygy, (see, |9, 11]) are marked, while the values of yax correspond to the
upper limits of the subfigures. In addition, Figure 3 shows the Laguerre-Gauss—-Radau
nodes under the scaling (2.12), and the grid nodes y? obtained by either the mapping
(2.13), (2.14), or (2.15).

3. Numerical implementation of the Galerkin—collocation

method

To implement the approximation method described in Section 2.1, one has to compute
the nodes y; and weights #; of the quadrature formula (2.5), the derivatives of ¢;(y) (2.7)
at the grid nodes, and the values of ¢;(y) (2.7) at y = 0. In this section, we provide an
algorithm for computing these quantities; the proposed algorithm is stable, including the
case of large n.

By definition [19], the Laguerre polynomials are orthogonal in the inner product

“+o0o

/ Li(y) Lin(y)e™ dy = Orm



with the exponential weight function. They satisfy the following three-term relations

Lo(y) =1, Li(y)=1-y,

(3.1)
—kL-1(y) + (2k + 1) Ly(y) — (k + 1) L41(y) = yLi(y),
and can be represented as
e¥ dF (e_yyk)
L = ———"7 3.2
In addition, the Laguerre polynomials satisfy the relations
L (y) — Ly(y) = —La(y), (3-3)
YLy (y) = (n+ 1)(Lasa(y) — La(y)), (3.4)
whose derivation from (3.1) and (3.2) is straightforward, see [20)].
It is known [17] that the Laguerre-Gauss—Radau nodes y; are eigenvalues of the sym-
metric tridiagonal matrix
(1 -1 0 |
-1 3 -2
(3.5)

This allows for the robust computation of y;.

3.1. Some results

The quadrature weights #; (2.5) are determined by L, (y;), which can be computed by
the three-term relations (3.1). At large n and ¢, the values of |L,(y;)| appear to be very
large (up to the machine infinity), and the values of k; appear to be very small (up to the
machine zero). Therefore, the stable computation of &; = ke is an issue. At the same
time, the values of &; are bounded from below since the Laguerre functions are bounded,
|L,(y)| <1, at any n and y [10].

We propose to compute the weights #; (2.5) by

. exp (g — 2In(|Ln(y:))))

with an additional scaling at computing L, (y;) by (3.1). If we have |Ly(y;)| > ¢ at some

k < n, where c is a given threshold parameter, then we divide the previously computed
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Li(y;) and Li_1(y;) by ¢ and keep using the three-term relation. This scaling by c is
done whenever the result exceeds ¢ in absolute value. As a result, we have In(|L,(y;)|) =
neIn(c) + In(|L,(y;)|), where n, is the number of fractions done, and L, (y;) is the value
obtained by the procedure. Numerical experiments show the overall procedure is robust
to round-off errors at large n and ¢; the computed values of &; up to n = 512 are shown
in Figure 2.

Let us consider the numerical interpolation by the Laguerre interpolation functions

(2.7). The following statement is valid.

Lemma 1. Suppose the function f(y) is equal to f; at some grid 0 < g3 < -+ < Yp.
Then, the interpolant L,(f) constructed with the functions of the form

i (y)e~W=/2,

where gz(y) are the Lagrange interpolation polynomaials for this grid, is represented as

Y "R e-5)/2
L(f) = <Zyiyf) / (Z ﬁ) : (3.7)

i=1 =1

where )

@ )
ki
Proof. 1t is straightforward that the following representation

n ~

~ _ i
L(f) =Uy)e™? Y ——], (3:8)
i— ¥ T Y
is valid, where £(y) = [[(y — ). Then, (3.8) and
i=1
L 5 " 5\1.8*232‘/2
1=) Gy =)y “—o
i=1 =1 Y
end the proof. O
As for the polynomial interpolation (see, e.g., [0]), the representation (3.7) is called

the barycentric form of the interpolant, while \; are called the barycentric weights. The

barycentric weights can be computed in a robust way due to the following statement.

Theorem 1. Suppose 0 = yg < --- < y, are the Laguerre—Gauss—Radau nodes, and &;
are the quadrature weights in (2.5). Then, the barycentric weights i for this grid, and

those 5\9 for the grid y, < --- < y,, are represented as

~

A = e(n)(=1)'V ki, (3.9)
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A = e(n)(=1)'yiv/Fi, (3.10)

where
(—1)"/n+1

e(n) = (n+1)!

n

Proof. Let us prove (3.10) first. The polynomial ¢y(y) = [[(y — v;) has the same roots
i=1
as L, ,,(y); therefore, these polynomials differ only by a multiplicative factor. Using that

the leading coefficient of L, (y) is equal to (—1)"*1/(n + 1)!, we obtain that

. Qli/2 e¥i/2
0= — —— _ (3.11)
to(yi) (=)™ nlLiy, (i)
For the interior Laguerre-Gauss—Radau nodes, it is valid that
Yilna(yi) = —(n+ 1)Ly, (5) = —(n + 1) La(y2), (3.12)

where the left equality is obtained by taking the first derivative of (3.4), and the right one
follows from (3.3). Substituting (3.12) into (3.11) and using the definition of &; (2.5), we
obtain the statement (3.10) up to a sign. To end the proof, note that 5\? have to change
the sign, with A2 > 0.

To prove (3.9), note that

n

(y) = [ =) = vtoly),

1=0

and therefore
. eYi /2 evi /2

i = = :
Ulyi)  Lo(yi) + il (yi)
For the interior grid nodes the first term in the denominator of (3.13) equals 0, while the

(3.13)

second term is expressed in terms of \;; those lead to (3.9) at ¢ > 0. For the boundary
node yo = 0, we have £(0) = (=1)""'n!L!_,(0). To end the proof, note that the Laguerre
polynomials satisfy L/ (0) = —k, and therefore A = (=1)"/(n + 1)!. O

Note that the statement similar to (3.9) is proven in [21] for the polynomial interpolation
for the Laguerre-Gauss-Radau grid.

The barycentric weights A and ;\? contain the multiplicative factor ¢(n), which decays
at very large rate with increasing n. At some n, this factor becomes smaller than the
machine zero. However, there is no need to compute ¢(n) for the interpolant representation
(3.7), since the barycentric weights are involved both in the nominator and denominator.

Thus, the interpolant representation (3.7) with the barycentric weights computed by

12



Theorem 1 allow for the numerical interpolation from the Laguerre-Gauss-Radau grid to
another grid. In addition, substituting (3.10) into (3.7) at the point y = 0, the following

corollary is obtained.

Corollary 1. Suppose 0 < y; < --- <y, are the interior Laguerre—Gauss—Radau nodes,
k; are the quadrature weights in (2.5) corresponding to these nodes, and ¢;(y) are the

Laguerre interpolation functions (2.7) for this grid. Then,
(1) /&

$;(0) = — :
;l(_l)j NS L

One can also derive the explicit formula for the derivatives of the interpolation Laguerre
functions v;(y) (2.7) at the Laguerre-Gauss-Radau nodes. Note that such formula is given
in [16], Eq. (3.17), but without a proof.

Theorem 2. Suppose 0 = yg < - -+ <y, are the Laguerre-Gauss—Radau nodes, k; are the

quadrature weights in (2.5), and 1;(y) are the Laguerre interpolating functions (2.7) for

this grid. Then
((—=1)1 ., k.
CUIVE s

VEi(Yi — v5)

! —
i) =\ o, i=j#0,

n+1
\ 2 7
Proof. The derivative of the function v;(y) (2.7) is as follows

1 —(y—s
6w = (L) - ) e (3.14)
where /;(y) are the Lagrange interpolation polynomials. By (2.6), it is valid that

Ln(y) = L (y)
Ln(y;) '

By taking the derivative of (3.15), we obtain that

Ln<yz>
(i — y;) Ln(y;)

(y —y)li(y) =

(3.15)

f}(yz') =

at i # j. Substituting this expression to (3.14) and using the result for the barycentric
weights (3.9), we prove the theorem at i # j.

By taking the second derivative of (3.15), we obtain that
L (3)

205(y;) =

13



At yo = 0, it is valid that L,(0) = 1 and L, (0) = —n. At other nodes y;, it is valid that
Ly (y;) = Ly(y;) (3.3). Thus,

1, Jj#0.
205(y;) = (3.16)
—n, 7 =0.
The substitution of (3.16) into (3.14) ends the proof at i = j. O

To sum up, the Galerkin—collocation method based on the Laguerre functions can
be implemented as follows. The Laguerre-Gauss-Radau nodes y; are computed as the
eigenvalues of (3.5). The quadrature weights #; associated with this grid are computed
by (3.6) with an additional scaling while using the three-term relations (3.1). Then, the
values and derivatives of the functions (2.7) at the grid nodes are computed, see Corollary
1 and Theorem 2. For the interpolation of a grid function given at the nodes y; to another
grid, the barycentric formula (3.7) is used, where the barycentric weights are computed by
Theorem 1; the multiplicative factor ¢(n) is common for all barycentric weights at given
n, therefore there is no need to compute it. The proposed algorithm performs robustly,

including the case of large n.

4. Numerical experiments

As a result of the approximation of either the system (2.2) or (2.3) under the bound-
ary conditions (1.1) by either the Galerkin—collocation method from Section 2.1 or the
collocation method from Section 2.3, we obtain a differential-algebraic system of the form
(2.10).

Note that v lies in the kernel of F. Let Qr be a rectangular matrix, whose columns
form an orthonormal basis in the kernel of F. Likewise, let Qg be a rectangular matrix,
whose columns form an orthonormal basis in the kernel of G*. Under an additional
assumption that both F, G and Q}Qp are of full rank, the system (2.10) is equivalent to
the system of ordinary differential equations

dg _

—u
a 4

(4.17)

Y

where q = Qpv, and H = (QgQF)*l Q&JQr. The detailed justification of such a reduc-
tion of differential-algebraic systems is given in [22]; the assumption made is valid for the

considered problems. Note that the approximation by the Galerkin—collocation method
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ensures that F = —G*, and therefore Qr = Qg. It is also worth noting that ||q||3 = ||v]|3
is the discrete analogue of the energy functional (2.4).

Within the numerical stability analysis, the eigenvalue of H with the largest real
part is of the most interest |2, 3|. This eigenvalue is called the leading eigenvalue, and
the corresponding eigenvector is called the leading eigenvector; we denote the leading

eigenvalue by Apax. The another quantity of physical interest |2, 3] is
Fmax = tH 5
Joax || exp{tH}|l5,

which is called the maximum energy amplification. The quantity I',.. represents the
maximum possible growth of the dusturbance kinetic energy density at given time period
t € [0,7]. In case the matrix H is non-normal, the value of '}« might significantly
exceed the growth of the leading eigenvector exp (2Amax1’) |2, 3]; in this case, the initial
disturbance at which 'y, is achieved (which is called the optimal disturbance [2, 3])
usually differs from the leading eigenvector. The maximum energy amplification ', can
be computed by the efficient matrix algorithm [23] based on a low-rank approximation;
this algorithm guarantees the result with a given accuracy.

To compare the approximation methods, we study the convergence of both scalar
characteristics Apax and ['pa.c. Comparing the methods by the convergence of vector
characteristics, namely either the leading eigenvector or the optimal disturbance, could
not be done quantitatively due to additional errors from interpolation from one grid to
another.

For the considered test problems, the stability analysis can be performed only numer-
ically. To establish the referential values Xmax and T max, We set the artificial boundary
Ymax With zero boundary conditions for the velocity components at y = ynax and then
approximate the equations by the Galerkin—collocation method with the Lagrange inter-
polation polynomials for the Gauss-Lobatto grid as trial and test functions. The approx-
imation properties of these basis functions are well-established [1], while the method was
widely used for hydrodynamic stability problems considered on finite domains. Therefore,
this method is reliable that is the most important for obtaining referential values. For
boundary-layer stability problems, this method is certainly inefficient, since the Gauss—
Lobatto nodes are refined both to y = 0 and y = ymax, While the value of 4., has to be
tuned manually. Tracking the convergence of the referential solution by increasing n and
Ymax, We achieve the convergence of j\max and fmax up to a desired precision.

As the first test problem, we perform temporal stability analysis of the Ekman layer
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(2.3). The Ekman layer could be considered as the simplest model of atmospheric bound-
ary layers, with its stability being studied in detail (see [11] and references therein). Using
the results of [11], we choose the parameter values as Re = 500, ypr, = 5, a = —|k|sin(e),
v = |k|cos(e), and T' = 50, where |k| = 0.5, ¢ = /9. The referential values of the lead-
ing eigenvalue S\max = 0.02375517 + 0.026959526i and the maximum energy amplification
fmax = 207.14602 are computed at y,.x = 20 and n = 128.

Figure 4 demonstrates the relative errors at computing A,.. and I'y,.. for various
approximation methods. All methods show an exponential convergence rate of A\, with
increasing n. However, only the Galerkin—collocation method based on the Laguerre
functions shows an exponential convergence rate of I' ;.. Note that ', converges slightly
faster than A,.. for this method. It is also worth noting that there are no significant
differences between collocation methods at various mappings. Additional experiments
not presented in this paper show that these findings remain qualitatively the same at
increasing or decreasing the Reynolds number.

As the second test problem, we perform temporal stability analysis of the Blasius layer
(2.2). This main flow could be considered as the simplest model of aerodynamic boundary
layers, with its stability being studied in detail (see |2, 3] and references therein). Using
the results of |9], we choose the parameter values as Re = 999, = 0.25, and v = 0
for computing An.y; and the parameter values Re = 999, a = 0.3, v = 1, T' = 50 for
computing I',.c. The typical boundary-layer thickness is ygr, = 4.27. The referential
values of the leading eigenvalue ;\max = 0.00213694 — 0.08843026i and the maximum
energy amplification D = 279.334811 are computed at yma.x = 40 and n = 256.

Figure 5 demonstrates the relative errors at computing A,.. and I',,.. for various
approximation methods. The collocation method shows an exponential convergence rate
of Anax With increasing n; and there are no significant differences between mappings used.
In contrast, for the Galerkin—collocation method based on the Laguerre functions, the
accuracy that can be achieved is limited; nevertheless, the obtained accuracy might be
more than enough in applications. This issue is remedied by choosing a larger ygy,, that
is also shown in Figure 5. One can also improve the scaling (2.12) by increasing the share
of the nodes outside the boundary layer.

As for the Ekman layer, the Galerkin—collocation method based on the Laguerre func-
tions shows an exponential convergence rate of I',,.,, while the collocation method leads
to a slower convergence of I'.. This disadvantage of the collocation method appears

to be irremediable; and the reason is an ill approximation of the operator d*/dy?, which
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leads to the presence of slowly damped unphysical solutions. The basis for this conclusion
are as follows. First, it is observed that convergence to the referential value fmax for the
collocation method is from above, i.e., ' > fmax. Second, let us consider the discrete
analogue of the operator d?/dy?* on the half-line under zero boundary conditions at y = 0
and y = +o00; denote this matrix by L. The collocation method, in general, does not
ensure the symmetry of L, although in this case it provides negative definiteness. Never-
theless, the matrix L resulted as the approximation by the collocation method has a large
condition number (e.g., of order 10° at n = 32 at the mapping (2.13)), and the spectrum
of L contains several very small in absolute value negative eigenvalues corresponding to
strongly oscillating eigenvectors. For comparison, L has the conditional number of order
105 at n = 32, when approximated by the Galerkin—collocation method based on the

Laguerre functions.

5. Summary

This paper proposes the Galerkin—collocation method based on the Laguerre functions
for approximating spectral and boundary-value problems arising in studying boundary-
layer instabilities. These problems considered on the half-line ¥y > 0, where y is the
wall-normal coordinate. The robust numerical implementation of this method is pro-
posed (see Section 3), including the procedure for computing the weights of the Laguerre—
Gauss—Radau quadrature formula, the explicit expressions for values and derivatives of
the Laguerre interpolation functions at the grid nodes, and the procedure for numerical
interpolation from the Laguerre-Gauss—Radau grid to another grid.

Within temporal stability analysis of the Blasius and Ekman layers, the proposed
method is compared to the collocation method with mappings; the latter method is often
used for numerical analysis of boundary-layer instabilities. The comparison is made at
computing both the leading eigenvalue A.x and the maximum energy amplification [',. .
It is shown that both type of methods show an exponential convergence rate of Ay.y; and
differences between the methods are insignificant. However, the Galerkin—collocation
method based on the Laguerre functions shows an exponential convergence rate of I'y.,
while the collocation method leads to a slower convergence of this quantity. It is shown
that I' . converges faster than A,.. for the Galerkin—collocation method based on the
Laguerre functions.

The Galerkin—collocation method based on the Laguerre functions might be success-
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fully applied as the wall-normal approximation for more complex boundary-layer stability

problems (see the recent work [21]).
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Figure 1: On the left: the Lebesgue function ®(y) (2.11) at n = 32. The Laguerre—
Gauss—Radau nodes are marked with green dots. On the right: the increase of Lg (green
solid) with n, and that of the Lebesgue constant for the polynomial interpolation for the
Chebyshev grid (black dashed).

Figure 2: On the left: the Laguerre-Gauss-Radau nodes under the scaling (2.12) at
fixed ygr, = 5 and at n = 2¥, where k = 4,...,9. The independent variable y is stretched
along the vertical axis. On the right: the quadrature weights #; (2.5) under the scaling
(2.12) at the same yg, and n.

Figure 3: The independent variable y is along the vertical axis. On the left: the
Blasius velocity profile Ug(y) (YL = 4.27, Ymax = 40). On the right: the Ekman velocity
profiles, Ug(y) and Wg(y) (YL = 5, Ymax = 20). The Laguerre-Gauss-Radau nodes under
the scaling (2.12) (green dots) and the Chebyshev points under the mappings (2.13),
(2.14), and (2.15) (red, blue and pink dots, respectively) at n = 32.

Figure 4: The relative error at computing Apax (on the left) and I'y.y (on the right)
with increasing n for the Ekman layer. Results for the Galerkin—collocation method
based on the Laguerre functions with scaling (2.12) are marked with green. Those for the
method used to obtain referential values are marked with black. Those for the collocation
methods with mappings (2.13), (2.14) and (2.15) are marked with red, blue and pink,
respectively.

Figure 5: The relative error at computing Apax (on the left) and I'y,.x (on the right)
with increasing n for the Blasius layer. The colors mean the same as for Figure 4. In
addition, results for the Galerkin—collocation method based on the Laguerre functions

with scaling (2.12) are shown at larger ygr, = 5.5 (green dotted).
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