Collocation-variational approaches of numerical solution
of the Volterra integral equations of the first kind !
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Abstract. Linear Volterra equations of the first kind are considered. A class of such
problems, which have a single solution, is singled out, and collocation-variational methods are
proposed for their numerical solution. The essence of these algorithms is that the approximate
solution is found in the nodes of a uniform grid (collocation condition), which give an
underdetermined system of linear algebraic equations. The system thus obtained is supplemented by
the condition of minimum of the target function, which approximates the square of the norm of the
approximate solution. As a result, we obtain a quadratic programming problem: the target function
(the square of the norm of the approximate solution) is quadratic, the constraints (collocation
conditions) are equal. This problem is solved by the method of Lagrange multipliers. Simple enough
methods of the third order are considered in detail. The results of calculations of test problems are
given. Further development of this approach for numerical solution of other classes of integral
equations is discussed. Bibl. 12. Table 4.
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1. INTRODUCTION

The paper is devoted to numerical solution of linear Volterra integral equations of the form
t
[KtDx(@)dr=f(t), 0<t<t<1, (1)
0

wheref (t) andK(t, ) are given functions with sufficiently smooth elements,x(t) is the desired
function. At

K(tt)+0 vte[01], f(0)=0 (2)
and continuous functionsK (t,t), K'¢ (7, t)|.=¢ f(t) there exists a single continuous solution of this
problem (see, e.g., [1], [2]).

Approaches to the numerical solution of equation (1) with condition (2) can be found in
monographs [4]-[6] (collocation and multistep methods), [7] (block methods), thesis [8]. In [9],
results on this topic and difficulties that arise in developing methods for solving equation (1) are
presented.
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In this paper we propose one-step methods for solving the above problems, which have
proved themselves perfectly when solving differential-algebraic equations (see [10] and the
bibliography given there) and are a generalization of the paper [11].

2. QUADRATURE FORMULAS AND ALGORITHMS
When constructing methods for solving the original problem, we will need some results from
the theory of approximate integration. Let us dwell in detail on the four-point quadrature formulas of
the third order, which will be required for further presentation.
Let's set a uniform grid on the segment [0,1]t; = ih, i =0,1,...,N, h = 1/N , and suppose
that for a sufficiently smooth functiong(t) it is knowng(t;). Then
¢

f g(t) dt = h[b1g;—3 + bygi—2 + b3gi—1 + bagil, (3)
ti—3
ti—1
f g(t) dt = hlaygi-3 + a,g;—» + azgi—1 + asgil, 4)
ti—3

where the coefficientsa;, bj,j = ﬁ satisfy the third-order conditions, i.e., the quadrature formulas
(3), (4) are exact for any polynomials of degree not higher than three.

Omitting elementary calculations, we obtain that these coefficients are the solution of the
SLAU

b
1 1 1 1 Zl o 2 3
0 1 2 3 a2 b2 2 4.5 5)
0 1 4 9 33 8/3 9 [
a, b,

Assuming in (5)a; = a, by = b - free parameters, we obtain that the solution of SLAU (5) is
(aq,a3,a3,a4) = (a,7/3 —3a,—2/3+ 3a,1/3 — a), (6)

(by, by, b3, by) = (b, 2.25 — 3b,3b,0.75 — b). (7)

Let us proceed to the description of methods for approximate solution of the ELI (1)
assuming thatx, = x(0) is given or calculated in advance. These algorithms are based on the
quadrature formulas (3) and (4) with coefficients satisfying relations (6) and (7), respectively. For
simplicity, let us assumeN to be a multiple of three and denote by

fi = f(t), Kij = K(ti, t)), x; = x(¢;).
In this case for equation (1) we will have

ti—1 3h 5h
[ K(ticy,D)x(@) dt = [ K(tie, D)x(@) dt + [ K(ti_q, D)x(7) dT + -+ + (8)
0 0 3h
ti—1
+ tf K(ti—1,7)x(7) dt = h[b1K;_1 09X + byK;_11%1 + b3K;_12X; + byK;_13%3) +
i—3

+(b1Ki_13x3 + byK;_1 4%4 + b3K;_15X5 + DyK;_16X6) + -+ +
+(a1Ki—1,i—3%i—3 + QK1 2X;_5 + a3K;_q;-1Xi—1 + a4 K;_1;x;)] =

_ . \i-3
=hY =0 DijKi—1,j% + hla1Ki_1i3Xi_3 + axK;_1; 2% 5 + asK;_1; 1x;_1 +



a4Ki—1,ixi] = fi-1

n
t 3h 6h
[ K(t;, Dx(x) dt = [ K(t;, D)x(7) dt + [ K(t;, D)x(7) dT + - + )
0 0 3h
t;
+ f K(ti, T)X(T) dT = h[(blKi’OxO + szi’lxl + b3Ki’2x2 + b4_Kl"3x3) +
ti—3

+(b1Ki’3x3 + szi’4_X4 + bgKi’SxS + b4Ki’6x6) + +
+(b1Kii—3%i—3 + b2K; 2% 5 + b3K; i 1Xi_1 + bsK; ix;)] =

= h X423 pijKijx; + h[biKii_3X;_3 + boKi i pX;_5 + b3Ki i1 X1 + byK; ;] = fi,
i=369,..,N.
The pointst;_; andt; will be called collocation points or collocation nodes.
Assuming x(0) = x, to be given and using the above quadrature formulas, we obtain
thatx;_,, x;_; andx; are solutions of the SLAU

Xi—
ha,Ki_1;— hazK;_1;_1 ha,K;_,; xlj

i
hb,K;; 5  hbsK;; 1  hb,K;; x; |

= h\ 323 pijKijx; + biKii_sxi_s

L

i-3
j=0 PijKi—1j% + a1 K 1;-3%;-3 fioq
+ .

or in vector-matrix form
A;X; = B;, (10)
where
ha;Ki 1,2 hazKi_1;-1 hauK;_q;
A;=| hbyKii,  hbsKiiy  hbuKi; |, Xi = (g1, x)T,

Z;';% PijKi—1% + a1K;_1;-3%;-3 fi_1
Bi = =h| Y23 pijKi % + biKiisxis + <fi )
These systems have dimensionality(2 X 3) , i.e., they are underdetermined.

We will look at SLAU (10) as constraints of the equality type to find the minimum of the
square of the norm of the approximate solution y;(t),t € [t;_3,t;], Viz1(t;) = yi(t;),t €
[ti_3, t;] i = 3,4,...,N, In this case we will have a problem for a conditional minimum

Il y I~ min (11)
under constraints of the equality type (10).

If the norm of the functiony(x;_3, x;_», X;_1, X;, t) is chosen unsuccessfully, for example, in
the space of continuous or continuously differentiable functions, then the problem (11) with
constraints (10) will be rather complicated, so we will assume that

Dy(t) = L3(x;_3,x;—2,X;_1,X;, t) 1s an interpolation polynomial of the third degree passing



through the points (x;_,,, ti—m), m = 0,1,2,3;
2)

ti
Iy () 12=1 Ly () 7= Thoo [ ESPOLIY () dt, 0<7 <3, (12)

ti—3

Here we will restrict ourselves to a special case of (12), namely,r = 3 and to calculate the
definite integral in formula (12) we will use some known quadrature formula (see, for example,
[12]). Then we have

t
Il L3() I°= Ys=0 [ Lgm)(xi—&xi—z'xi—l:xi' t)L(gm)(xi—3'xi—2:xi—l:xi: t)ydt~ (13)

ti—3

2 2 2
~ h [||Z73n=o a%xi—3+m|| + ||Z13:n=0 (a,lnxl-_3+m)/h|| + ||Z73:n=0 (a%lxi_3+m)/h2|| +

+ ||Z73:n=0 (ars;txi—3+m)/h3||2] = @(Xi—2, Xi—1,X;),
where Y3 _o (@ xi_z1m)/h? = x(@D(EF), &P € [t;_s,t;], and the norm of the finite-dimensional
vector is here understood as Euclidean.

The coefficientsa;, depend on the choice of the quadrature formula and the approximation
formula .Lgm) (%i_3,Xi—2, Xi_1, X, t)

The coefficients a3, are determined uniquely from the apparent equality A3x; = (x; —
3x;_1 +3x;_5 — x;_3), i.e. a® = (1,-3,3,—1).

For example, atf = t;_3 the coefficients a® = (0,0,0,1),a® = 1/6(2,—9,18,—11),a? =
(=1,4,-5,2).

Att = t;_, coefficients a® = (0,0,1,0),a* = 1/6(—1,6,—3,-2), a? = (0,1,—2,0).

Att = t;_; coefficients a® = (0,1,0,0),a’ = 1/6(2,3,—6,1), a? = (1,—2,1,0).

Att = t; coefficients a® = (1,0,0,0),a* = 1/6(11,-18,9,-2), a? = (2,-5,4,—1).

Thus, given thatx, is set, at each integration segment[t;_3,t;], i = 3,6, ..., N , we have a
quadratic programming problem: to find the minimum of the target functiong (x;_,, x;_1, X;) under
constraints of the equality type (10).

Since multiplication of the target function (13) by an arbitrary non-zero number does not
affect the finding of the argument of the conditional minimum, this problem is equivalent to the
problem

. 2
miny (x;, x;_1, %) = h®|IX3—0 a%xi_syml| + (14)

+h* | Zihmo (@i aim)/hI| + B[ Zihmo (@B am) /21| I A3, 12
with constraints (10).

Since the first, second and third summands in (14) contain small summands of
orderh®, h*, h? respectively, they can be discarded (or part of them). For example, restricting (14) to
the third and fourth summands only or to the last summand only, we obtain two mathematical
programming problems:

1. Find

. 2
miny; (g, Xi—1, %i—2) = h2||X3—0 (@2 xi_3em)/R21| +I A3x; 112, (15)

2. Find
miny, (x;, Xi—1, X;—2) =1l A%x; II? (16)
under constraints of the equality type (10).



Problems (15), (10) and (16), (10) can be solved by the method of Lagrange multipliers.
Since the target functions (15) and (16) are quadratic and the constraints (10) are equalities, the
solution of these problems is the solution of the corresponding SLAEs. For example, the solution of
problems (16) with constraints (10) is the solution of SLAU of the following form

AiX; = By, (17)
where
3 -3 1
_ | hb2Kicriz Rb3Ki1i1 hbuKiq; (18)
' ha;K;;—,  hazK;;_1  hauK;; [

Xi = (Xi—2, X191, x)7,

B; = (xi-3,B])",
where the vectorB; is defined by formula (10).
Assertion. Let the conditions for the integral equation (1) be satisfied:

1) the elements ofK (t, t), f(t) belong to the class ;C[‘f,,l]

2) K(t, t) # 0Vt € [0,1], .f(0) = 0,x9 = x(0)

Then it is fair to estimate , |l x; — x(t;) l= 0(h®)i = 3,4,...,N. wherex;_,,x;_q,X; are
solutions of problems (17)

The proof is based on the discrete analog of the Gronwall-Bellman lemma (see [3], [6]).

Note that if we putr < 3, in (12), we obtain a different family of algorithms. For example,
atr = 2 (by analogy with problem (14)) we will have problems on the conditional minimum of a
quadratic function:

1. Find

. 2 2
minQ(x;, x;—1, Xi—2) = ||X3z0 (@2Xi—zsm)l|” + h2[IZ320 (@hxizzem)l|” + (19)

+h*|IZ300 (@xiaem)l|
under constraints of the equality type (10).
Atr = 1 we have
2. Find

MinC (g %1, %i-2) = [[Zhoo (@hxiasm)l|” + 2| Zhmo (@il (20)
under constraints of the equality type (10).
By analogy with (13), these problems are equivalent to finding the conditional minimum of
the functionsQ(x;, x;_1, x;_») andl'(x;, x;_1,x;_,) , respectively.
Just as for the caser = 3 , for the caser = 2 in formula (19) the summands containingh*
orh* andh? can be discarded. And forr = 1 the summand containingh? can be discarded.
Then we obtain a family of algorithms: forr = 2 find

. 2 2
min€ (x;, X1, X;—2) = ||Z$n=0 (arznxi—3+m)|| + thIZ?n=o (“rlnxi—3+m)|| (21)
or
: 2
minQ, (x;, X;_1, Xj—2) = ||Z13:n=0 (arznxi—3+m)|| (22)
under constraints of the equality type (10).
Forr = 1 we will have a family of methods: find
: 2
minly (x;, X;_1, X;—2, h) = ||an=0 (a%lxi_3+m)|| (23)
under constraints of the equality type (10).
To solve problems (21)-(23) we can apply the method of Lagrange multipliers. The



conditional minimum of the functions , ,2Q,Q, and ,I'T; in this case is found exactly from the
solution of the corresponding SLAEs.

Note that the study of stability and convergence rate of methods (19)-(23) is of separate
interest. The properties of these algorithms will depend not only on the choice of quadrature
formulas (see formula (6)), i.e., on the parametersa andb , but also on the choice of approximation
of the derivatives of the solution (see formula (12)), i.e., on the parametersal,,0 <, m <3 .
Different variants of such approaches have been considered. Preliminary analysis of these
algorithms showed that they have the property of stability.

4. NUMERICAL
In this section we present calculations of test cases using algorithm (17) with parametersa =
1/3(1,4,1,0)7 ,b = 1/4(3,0,9,0)T . The results are presented in the form of tables. The designation
er=max ;=1 y|x(t; — x;].
Example 1 (see [6], p. 149). Consider an IS

r*+1) fot cos(t — t)x(t)dr = sin(t) + r(exp(rt) — cos(t),t € [0,1],
the exact solution of which x(t) = exp(rt). The results of calculations at , ,r =1la =1/
3(1,4,1,00Th = 1/4(3,0,9,0)7 are presented in Table 1.
The calculation results of this example at the parameter values , ,a = 1/3(0,7,—2,1)Tb =
1/4(0,9,0,3)"r = 1 are presented in Table 2.
Example 2 (see [6], p. 517). Consider an IS

a fot exp(a(t — 1)x(r)dt = (exp(at) — exp(—at))/2sin(t) + r(exp(rt) — cos(t),t €
[0,1],
the exact solution of whichx(t) = exp(—at) . The results of calculations at parameter values , ,& =
3a =1/3(1,4,1,0)"h = 1/4(3,0,9,0)T are presented in Table 3.

The results of calculations of this example at the value of parameters , ,a =1/
3(0,7,—-2,1)"b = 1/4(0,9,0,3)Ta = 3 are presented in Table 4.

Numerical calculations of these examples agree with the statement. In addition to the above
examples, numerous calculations of other test cases, which do not contain rigid components, have
been performed with different parameter choicesa andb using algorithm (17). These experiments
also agree well with the statement.

5.

In this paper, a class of Volterra integral equations of the first kind has been identified, for
the numerical solution of which collocation-variational methods of the third order have been
proposed. These algorithms are reduced to the solution of a mathematical (quadratic) programming
problem - the target function is quadratic (some analog of the square of the norm of the approximate
solution) with equality-type constraints (collocation condition). Such a problem is equivalent to
finding a solution to a nongenerated SLAU. Numerical calculations have shown that further
development of this approach is promising. Further detailed investigation of collocation-variational
methods (21)-(23), methods of higher order and for more general problems is planned, in particular,
for Volterra integral equations having the degree of instability (see [3]) greater than one and for
equations of the first kind with a kernel containing a weak singularity.

Table 1: Numerical calculations of example 1 at ,r = 1a = 1/3(1,4,1,0)T , b = 1/4(3,0,9,0)T



0.1

0.05

0.025

€T

0.0039

0.0006

0.00009

Table 2: Numerical calculations of example 1 at ,r = 1a = 1/3(0,7,—2,1)7 , b = 1/4(0,9,0,3)T

0.1

0.05

0.025

€r

0.0027

0.0004

0.00006

Table 3: Calculations for example 2 with parameter values ,, @ = 3a = 1/3(1,4,1,0)Tb =

1/4(3,0,9,0)7

0.1

0.05

0.025

€r

0.085

0.012

0.0018

Table 4: Calculation results of example 2 with the parameters ,, @ = 3a = 1/3(0,7,—2,1)Tb =

1/4(0,9,0,3)7

h 0.1 0.05 0.025

er 0.02 0.0035 0.00052
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