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Abstract. Linear Volterra equations of the first kind are considered. A class of such 
problems, which have a single solution, is singled out, and collocation-variational methods are 
proposed for their numerical solution. The essence of these algorithms is that the approximate 
solution is found in the nodes of a uniform grid (collocation condition), which give an 
underdetermined system of linear algebraic equations. The system thus obtained is supplemented by 
the condition of minimum of the target function, which approximates the square of the norm of the 
approximate solution. As a result, we obtain a quadratic programming problem: the target function 
(the square of the norm of the approximate solution) is quadratic, the constraints (collocation 
conditions) are equal. This problem is solved by the method of Lagrange multipliers. Simple enough 
methods of the third order are considered in detail. The results of calculations of test problems are 
given. Further development of this approach for numerical solution of other classes of integral 
equations is discussed. Bibl. 12. Table 4. 

 Keywords: Volterra integral equations, quadrature formulas, collocation, Lagrange 
multiplier method. 

1. INTRODUCTION

The paper is devoted to numerical solution of linear Volterra integral equations of the form 

∫
0

𝑡𝑡
𝐾𝐾(𝑡𝑡, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 = 𝑓𝑓(𝑡𝑡),    0 ≤ 𝜏𝜏 ≤ 𝑡𝑡 ≤ 1, (1) 

 where𝑓𝑓(𝑡𝑡) and𝐾𝐾(𝑡𝑡, 𝜏𝜏) are given functions with sufficiently smooth elements,𝑥𝑥(𝑡𝑡) is the desired 
function. At  

𝐾𝐾(𝑡𝑡, 𝑡𝑡) ≠ 0   ∀𝑡𝑡 ∈ [0,1],   𝑓𝑓(0) = 0 (2) 
 and continuous functions𝐾𝐾(𝑡𝑡, 𝑡𝑡), 𝐾𝐾′𝑡𝑡(𝜏𝜏, 𝑡𝑡)|𝜏𝜏=𝑡𝑡, 𝑓𝑓′(𝑡𝑡) there exists a single continuous solution of this 
problem (see, e.g., [1], [2]). 

Approaches to the numerical solution of equation (1) with condition (2) can be found in 
monographs [4]-[6] (collocation and multistep methods), [7] (block methods), thesis [8]. In [9], 
results on this topic and difficulties that arise in developing methods for solving equation (1) are 
presented. 

1 The study was supported by a grant from the Russian Science Foundation (project No. 22-11-00173).
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In this paper we propose one-step methods for solving the above problems, which have 
proved themselves perfectly when solving differential-algebraic equations (see [10] and the 
bibliography given there) and are a generalization of the paper [11]. 

   
2. QUADRATURE FORMULAS AND ALGORITHMS 

When constructing methods for solving the original problem, we will need some results from 
the theory of approximate integration. Let us dwell in detail on the four-point quadrature formulas of 
the third order, which will be required for further presentation. 

Let's set a uniform grid on the segment [0,1]𝑡𝑡𝑖𝑖 = 𝑖𝑖ℎ, 𝑖𝑖 = 0,1, … ,𝑁𝑁, ℎ = 1/𝑁𝑁 , and suppose 
that for a sufficiently smooth function𝑔𝑔(𝑡𝑡) it is known𝑔𝑔(𝑡𝑡𝑖𝑖). Then  

 ∫
𝑡𝑡𝑖𝑖−3

𝑡𝑡𝑖𝑖
𝑔𝑔(𝑡𝑡) 𝑑𝑑𝑑𝑑 ≈ ℎ[𝑏𝑏1𝑔𝑔𝑖𝑖−3 + 𝑏𝑏2𝑔𝑔𝑖𝑖−2 + 𝑏𝑏3𝑔𝑔𝑖𝑖−1 + 𝑏𝑏4𝑔𝑔𝑖𝑖], (3) 

 

 ∫
𝑡𝑡𝑖𝑖−3

𝑡𝑡𝑖𝑖−1
𝑔𝑔(𝑡𝑡) 𝑑𝑑𝑑𝑑 ≈ ℎ[𝑎𝑎1𝑔𝑔𝑖𝑖−3 + 𝑎𝑎2𝑔𝑔𝑖𝑖−2 + 𝑎𝑎3𝑔𝑔𝑖𝑖−1 + 𝑎𝑎4𝑔𝑔𝑖𝑖], (4) 

 where the coefficients𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗, 𝑗𝑗 = 1,4 satisfy the third-order conditions, i.e., the quadrature formulas 
(3), (4) are exact for any polynomials of degree not higher than three. 

Omitting elementary calculations, we obtain that these coefficients are the solution of the 
SLAU  

 �

1 1 1 1
0 1 2 3
0 1 4 9 �

⎝

⎜
⎛

𝑎𝑎1 𝑏𝑏1
𝑎𝑎2 𝑏𝑏2
𝑎𝑎3 𝑏𝑏3
𝑎𝑎4 𝑏𝑏4

⎠

⎟
⎞

= �

2 3
2 4.5
8/3 9 �. (5) 

 Assuming in (5)𝑎𝑎1 = 𝑎𝑎, 𝑏𝑏1 = 𝑏𝑏 - free parameters, we obtain that the solution of SLAU (5) is  
 (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4) = (𝑎𝑎, 7/3 − 3𝑎𝑎,−2/3 + 3𝑎𝑎, 1/3 − 𝑎𝑎), (6) 

 
 (𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4) = (𝑏𝑏, 2.25 − 3𝑏𝑏, 3𝑏𝑏, 0.75 − 𝑏𝑏). (7) 

 
Let us proceed to the description of methods for approximate solution of the ELI (1) 

assuming that𝑥𝑥0 = 𝑥𝑥(0)  is given or calculated in advance. These algorithms are based on the 
quadrature formulas (3) and (4) with coefficients satisfying relations (6) and (7), respectively. For 
simplicity, let us assume𝑁𝑁 to be a multiple of three and denote by  

 𝑓𝑓𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑖𝑖), 𝐾𝐾𝑖𝑖𝑖𝑖 = 𝐾𝐾(𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗), 𝑥𝑥𝑖𝑖 ≈ 𝑥𝑥(𝑡𝑡𝑖𝑖). 
In this case for equation (1) we will have  

 ∫
0

𝑡𝑡𝑖𝑖−1
𝐾𝐾(𝑡𝑡𝑖𝑖−1, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 = ∫

0

3ℎ
𝐾𝐾(𝑡𝑡𝑖𝑖−1, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 + ∫

3ℎ

5ℎ
𝐾𝐾(𝑡𝑡𝑖𝑖−1, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 + ⋯+ (8) 

 

+ ∫
𝑡𝑡𝑖𝑖−3

𝑡𝑡𝑖𝑖−1
𝐾𝐾(𝑡𝑡𝑖𝑖−1, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 = ℎ[𝑏𝑏1𝐾𝐾𝑖𝑖−1,0𝑥𝑥0 + 𝑏𝑏2𝐾𝐾𝑖𝑖−1,1𝑥𝑥1 + 𝑏𝑏3𝐾𝐾𝑖𝑖−1,2𝑥𝑥2 + 𝑏𝑏4𝐾𝐾𝑖𝑖−1,3𝑥𝑥3) + 

 
 +(𝑏𝑏1𝐾𝐾𝑖𝑖−1,3𝑥𝑥3 + 𝑏𝑏2𝐾𝐾𝑖𝑖−1,4𝑥𝑥4 + 𝑏𝑏3𝐾𝐾𝑖𝑖−1,5𝑥𝑥5 + 𝑏𝑏4𝐾𝐾𝑖𝑖−1,6𝑥𝑥6) + ⋯+ 

 
 +(𝑎𝑎1𝐾𝐾𝑖𝑖−1,𝑖𝑖−3𝑥𝑥𝑖𝑖−3 + 𝑎𝑎2𝐾𝐾𝑖𝑖−1,𝑖𝑖−2𝑥𝑥𝑖𝑖−2 + 𝑎𝑎3𝐾𝐾𝑖𝑖−1,𝑖𝑖−1𝑥𝑥𝑖𝑖−1 + 𝑎𝑎4𝐾𝐾𝑖𝑖−1,𝑖𝑖𝑥𝑥𝑖𝑖)] = 

 
 = ℎ∑𝑖𝑖−3

𝑗𝑗=0 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖−1,𝑗𝑗𝑥𝑥𝑗𝑗 + ℎ[𝑎𝑎1𝐾𝐾𝑖𝑖−1,𝑖𝑖−3𝑥𝑥𝑖𝑖−3 + 𝑎𝑎2𝐾𝐾𝑖𝑖−1,𝑖𝑖−2𝑥𝑥𝑖𝑖−2 + 𝑎𝑎3𝐾𝐾𝑖𝑖−1,𝑖𝑖−1𝑥𝑥𝑖𝑖−1 +



𝑎𝑎4𝐾𝐾𝑖𝑖−1,𝑖𝑖𝑥𝑥𝑖𝑖] = 𝑓𝑓𝑖𝑖−1 
и 

 

 ∫
0

𝑡𝑡𝑖𝑖
𝐾𝐾(𝑡𝑡𝑖𝑖, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 = ∫

0

3ℎ
𝐾𝐾(𝑡𝑡𝑖𝑖, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 + ∫

3ℎ

6ℎ
𝐾𝐾(𝑡𝑡𝑖𝑖, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 + ⋯+ (9) 

 

 + ∫
𝑡𝑡𝑖𝑖−3

𝑡𝑡𝑖𝑖
𝐾𝐾(𝑡𝑡𝑖𝑖, 𝜏𝜏)𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏 = ℎ[(𝑏𝑏1𝐾𝐾𝑖𝑖,0𝑥𝑥0 + 𝑏𝑏2𝐾𝐾𝑖𝑖,1𝑥𝑥1 + 𝑏𝑏3𝐾𝐾𝑖𝑖,2𝑥𝑥2 + 𝑏𝑏4𝐾𝐾𝑖𝑖,3𝑥𝑥3) + 

 
 +(𝑏𝑏1𝐾𝐾𝑖𝑖,3𝑥𝑥3 + 𝑏𝑏2𝐾𝐾𝑖𝑖,4𝑥𝑥4 + 𝑏𝑏3𝐾𝐾𝑖𝑖,5𝑥𝑥5 + 𝑏𝑏4𝐾𝐾𝑖𝑖,6𝑥𝑥6) + ⋯+ 

 
 +(𝑏𝑏1𝐾𝐾𝑖𝑖,𝑖𝑖−3𝑥𝑥𝑖𝑖−3 + 𝑏𝑏2𝐾𝐾𝑖𝑖,𝑖𝑖−2𝑥𝑥𝑖𝑖−2 + 𝑏𝑏3𝐾𝐾𝑖𝑖,𝑖𝑖−1𝑥𝑥𝑖𝑖−1 + 𝑏𝑏4𝐾𝐾𝑖𝑖,𝑖𝑖𝑥𝑥𝑖𝑖)] = 

 
 = ℎ∑𝑖𝑖−3

𝑗𝑗=0 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗 + ℎ[𝑏𝑏1𝐾𝐾𝑖𝑖,𝑖𝑖−3𝑥𝑥𝑖𝑖−3 + 𝑏𝑏2𝐾𝐾𝑖𝑖,𝑖𝑖−2𝑥𝑥𝑖𝑖−2 + 𝑏𝑏3𝐾𝐾𝑖𝑖,𝑖𝑖−1𝑥𝑥𝑖𝑖−1 + 𝑏𝑏4𝐾𝐾𝑖𝑖,𝑖𝑖𝑥𝑥𝑖𝑖] = 𝑓𝑓𝑖𝑖, 
    𝑖𝑖 = 3,6,9, … , 𝑁𝑁. 

The points𝑡𝑡𝑖𝑖−1 and𝑡𝑡𝑖𝑖 will be called collocation points or collocation nodes. 
Assuming𝑥𝑥(0) = 𝑥𝑥0  to be given and using the above quadrature formulas, we obtain 

that𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1 and𝑥𝑥𝑖𝑖 are solutions of the SLAU  

 �
ℎ𝑎𝑎2𝐾𝐾𝑖𝑖−1,𝑖𝑖−2 ℎ𝑎𝑎3𝐾𝐾𝑖𝑖−1,𝑖𝑖−1 ℎ𝑎𝑎4𝐾𝐾𝑖𝑖−1,𝑖𝑖
ℎ𝑏𝑏2𝐾𝐾𝑖𝑖,𝑖𝑖−2 ℎ𝑏𝑏3𝐾𝐾𝑖𝑖,𝑖𝑖−1 ℎ𝑏𝑏4𝐾𝐾𝑖𝑖,𝑖𝑖 ��

𝑥𝑥𝑖𝑖−2
𝑥𝑥𝑖𝑖−1
𝑥𝑥𝑖𝑖

� = 

 

 = ℎ�
∑𝑖𝑖−3
𝑗𝑗=0 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖−1,𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑎𝑎1𝐾𝐾𝑖𝑖−1,𝑖𝑖−3𝑥𝑥𝑖𝑖−3

∑𝑖𝑖−3
𝑗𝑗=0 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏1𝐾𝐾𝑖𝑖,𝑖𝑖−3𝑥𝑥𝑖𝑖−3 � + �

𝑓𝑓𝑖𝑖−1
𝑓𝑓𝑖𝑖 � 

or in vector-matrix form  
 𝐴𝐴𝑖𝑖𝑋𝑋𝑖𝑖 = 𝐵𝐵𝑖𝑖, (10) 

 where  

 𝐴𝐴𝑖𝑖 = �
ℎ𝑎𝑎2𝐾𝐾𝑖𝑖−1,𝑖𝑖−2 ℎ𝑎𝑎3𝐾𝐾𝑖𝑖−1,𝑖𝑖−1 ℎ𝑎𝑎4𝐾𝐾𝑖𝑖−1,𝑖𝑖
ℎ𝑏𝑏2𝐾𝐾𝑖𝑖,𝑖𝑖−2 ℎ𝑏𝑏3𝐾𝐾𝑖𝑖,𝑖𝑖−1 ℎ𝑏𝑏4𝐾𝐾𝑖𝑖,𝑖𝑖 � , 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖)𝑇𝑇, 

 

 𝐵𝐵𝑖𝑖 = −ℎ�
∑𝑖𝑖−3
𝑗𝑗=0 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖−1,𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑎𝑎1𝐾𝐾𝑖𝑖−1,𝑖𝑖−3𝑥𝑥𝑖𝑖−3

∑𝑖𝑖−3
𝑗𝑗=0 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏1𝐾𝐾𝑖𝑖,𝑖𝑖−3𝑥𝑥𝑖𝑖−3 � + �

𝑓𝑓𝑖𝑖−1
𝑓𝑓𝑖𝑖 �. 

These systems have dimensionality(2 × 3) , i.e., they are underdetermined. 
We will look at SLAU (10) as constraints of the equality type to find the minimum of the 

square of the norm of the approximate solution 𝑦𝑦𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ [𝑡𝑡𝑖𝑖−3, 𝑡𝑡𝑖𝑖], 𝑦𝑦𝑖𝑖+1(𝑡𝑡𝑖𝑖) = 𝑦𝑦𝑖𝑖(𝑡𝑡𝑖𝑖), 𝑡𝑡 ∈
[𝑡𝑡𝑖𝑖−3, 𝑡𝑡𝑖𝑖]  𝑖𝑖 = 3,4, … ,𝑁𝑁, In this case we will have a problem for a conditional minimum  

 ∥ 𝑦𝑦 ∥2→ min (11) 
 under constraints of the equality type (10). 

If the norm of the function𝑦𝑦(𝑥𝑥𝑖𝑖−3, 𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖, 𝑡𝑡) is chosen unsuccessfully, for example, in 
the space of continuous or continuously differentiable functions, then the problem (11) with 
constraints (10) will be rather complicated, so we will assume that 

1)𝑦𝑦(𝑡𝑡) = 𝐿𝐿3(𝑥𝑥𝑖𝑖−3, 𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖, 𝑡𝑡) is an interpolation polynomial of the third degree passing 



through the points (𝑥𝑥𝑖𝑖−𝑚𝑚, 𝑡𝑡𝑖𝑖−𝑚𝑚), 𝑚𝑚 = 0,1,2,3; 
2)  

 ∥ 𝑦𝑦(𝑡𝑡) ∥2=∥ 𝐿𝐿3(⋅) ∥2= ∑𝑟𝑟
𝑚𝑚=0 ∫

𝑡𝑡𝑖𝑖−3

𝑡𝑡𝑖𝑖
Ł3

(𝑚𝑚)(𝑡𝑡)𝐿𝐿3
(𝑚𝑚)(𝑡𝑡) 𝑑𝑑𝑑𝑑,   0 ≤ 𝑟𝑟 ≤ 3. (12) 

 
Here we will restrict ourselves to a special case of (12), namely,𝑟𝑟 = 3 and to calculate the 

definite integral in formula (12) we will use some known quadrature formula (see, for example, 
[12]). Then we have  

 ∥ 𝐿𝐿3(⋅) ∥2= ∑3
𝑚𝑚=0 ∫

𝑡𝑡𝑖𝑖−3

𝑡𝑡𝑖𝑖
𝐿𝐿3

(𝑚𝑚)(𝑥𝑥𝑖𝑖−3, 𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖, 𝑡𝑡)𝐿𝐿3
(𝑚𝑚)(𝑥𝑥𝑖𝑖−3, 𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖, 𝑡𝑡) 𝑑𝑑𝑑𝑑 ≈ (13) 
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𝑚𝑚=0 (𝛼𝛼𝑚𝑚2 𝑥𝑥𝑖𝑖−3+𝑚𝑚)/ℎ2|�
2

+ 
 

 + �|∑3
𝑚𝑚=0 (𝛼𝛼𝑚𝑚3 𝑥𝑥𝑖𝑖−3+𝑚𝑚)/ℎ3|�

2
� = 𝜑𝜑(𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖), 

where∑3
𝑚𝑚=0 (𝛼𝛼𝑚𝑚

𝑞𝑞 𝑥𝑥𝑖𝑖−3+𝑚𝑚)/ℎ𝑞𝑞 ≈ 𝑥𝑥(𝑞𝑞)(𝜉𝜉𝑖𝑖
𝑝𝑝), 𝜉𝜉𝑖𝑖

𝑝𝑝 ∈ [𝑡𝑡𝑖𝑖−3, 𝑡𝑡𝑖𝑖],  and the norm of the finite-dimensional 
vector is here understood as Euclidean. 

The coefficients𝛼𝛼𝑚𝑚
𝑞𝑞  depend on the choice of the quadrature formula and the approximation 

formula .𝐿𝐿3
(𝑚𝑚)(𝑥𝑥𝑖𝑖−3, 𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖, 𝑡𝑡) 

The coefficients 𝛼𝛼𝑚𝑚3  are determined uniquely from the apparent equality Δ3𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖 −
3𝑥𝑥𝑖𝑖−1 + 3𝑥𝑥𝑖𝑖−2 − 𝑥𝑥𝑖𝑖−3), i.e. 𝛼𝛼3 = (1,−3,3, −1). 

For example, at 𝑡𝑡̅ = 𝑡𝑡𝑖𝑖−3  the coefficients 𝛼𝛼0 = (0,0,0,1), 𝛼𝛼1 = 1/6(2,−9,18, −11), 𝛼𝛼2 =
(−1,4, −5,2). 

At𝑡𝑡̅ = 𝑡𝑡𝑖𝑖−2 coefficients 𝛼𝛼0 = (0,0,1,0), 𝛼𝛼1 = 1/6(−1,6, −3,−2), 𝛼𝛼2 = (0,1, −2,0). 
At𝑡𝑡̅ = 𝑡𝑡𝑖𝑖−1 coefficients 𝛼𝛼0 = (0,1,0,0), 𝛼𝛼1 = 1/6(2,3, −6,1), 𝛼𝛼2 = (1,−2,1,0). 
At𝑡𝑡̅ = 𝑡𝑡𝑖𝑖 coefficients 𝛼𝛼0 = (1,0,0,0), 𝛼𝛼1 = 1/6(11,−18,9, −2), 𝛼𝛼2 = (2,−5,4, −1). 
Thus, given that𝑥𝑥0 is set, at each integration segment[𝑡𝑡𝑖𝑖−3, 𝑡𝑡𝑖𝑖], 𝑖𝑖 = 3,6, … ,𝑁𝑁 , we have a 

quadratic programming problem: to find the minimum of the target function𝜑𝜑(𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖) under 
constraints of the equality type (10). 

Since multiplication of the target function (13) by an arbitrary non-zero number does not 
affect the finding of the argument of the conditional minimum, this problem is equivalent to the 
problem  

 min𝜓𝜓(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) = ℎ6�|∑3
𝑚𝑚=0 𝛼𝛼𝑚𝑚0 𝑥𝑥𝑖𝑖−3+𝑚𝑚|�

2
+ (14) 

 
 +ℎ4�|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚1 𝑥𝑥𝑖𝑖−3+𝑚𝑚)/ℎ|�
2

+ ℎ2�|∑3
𝑚𝑚=0 (𝛼𝛼𝑚𝑚2 𝑥𝑥𝑖𝑖−3+𝑚𝑚)/ℎ2|�

2
+∥ Δ3𝑥𝑥𝑖𝑖 ∥2 

with constraints (10). 
Since the first, second and third summands in (14) contain small summands of 

orderℎ6, ℎ4, ℎ2 respectively, they can be discarded (or part of them). For example, restricting (14) to 
the third and fourth summands only or to the last summand only, we obtain two mathematical 
programming problems: 

1. Find  
 min𝜓𝜓1(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) = ℎ2�|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚2 𝑥𝑥𝑖𝑖−3+𝑚𝑚)/ℎ2|�
2

+∥ Δ3𝑥𝑥𝑖𝑖 ∥2. (15) 
 

2. Find  
 min𝜓𝜓2(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) =∥ Δ3𝑥𝑥𝑖𝑖 ∥2 (16) 

 under constraints of the equality type (10). 



Problems (15), (10) and (16), (10) can be solved by the method of Lagrange multipliers. 
Since the target functions (15) and (16) are quadratic and the constraints (10) are equalities, the 
solution of these problems is the solution of the corresponding SLAEs. For example, the solution of 
problems (16) with constraints (10) is the solution of SLAU of the following form  

 𝐴𝐴𝑖𝑖𝑋𝑋𝑖𝑖 = 𝐵𝐵𝑖𝑖, (17) 
 where  

 𝐴𝐴𝑖𝑖 = �

3 −3 1
ℎ𝑏𝑏2𝐾𝐾𝑖𝑖−1,𝑖𝑖−2 ℎ𝑏𝑏3𝐾𝐾𝑖𝑖−1,𝑖𝑖−1 ℎ𝑏𝑏4𝐾𝐾𝑖𝑖−1,𝑖𝑖
ℎ𝑎𝑎2𝐾𝐾𝑖𝑖,𝑖𝑖−2 ℎ𝑎𝑎3𝐾𝐾𝑖𝑖,𝑖𝑖−1 ℎ𝑎𝑎4𝐾𝐾𝑖𝑖,𝑖𝑖

�, (18) 

.  
 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖)𝛵𝛵, 

 
 𝐵𝐵𝑖𝑖 = (𝑥𝑥𝑖𝑖−3, 𝐵𝐵𝑖𝑖𝛵𝛵)𝛵𝛵, 

where the vector𝐵𝐵𝑖𝑖 is defined by formula (10). 
 Assertion. Let the conditions for the integral equation (1) be satisfied: 
1) the elements of𝐾𝐾(𝑡𝑡, 𝜏𝜏), 𝑓𝑓(𝑡𝑡) belong to the class ;𝐶𝐶[0,1]

4  
2) 𝐾𝐾(𝑡𝑡, 𝑡𝑡) ≠ 0∀𝑡𝑡 ∈ [0,1], .𝑓𝑓(0) = 0, 𝑥𝑥0 = 𝑥𝑥(0) 
Then it is fair to estimate , ∥ 𝑥𝑥𝑖𝑖 − 𝑥𝑥(𝑡𝑡𝑖𝑖) ∥= 𝑂𝑂(ℎ3)𝑖𝑖 = 3,4, … ,𝑁𝑁.  where 𝑥𝑥𝑖𝑖−2, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖  are 

solutions of problems (17) 
The proof is based on the discrete analog of the Gronwall-Bellman lemma (see [3], [6]). 
Note that if we put𝑟𝑟 < 3, in (12), we obtain a different family of algorithms. For example, 

at𝑟𝑟 = 2 (by analogy with problem (14)) we will have problems on the conditional minimum of a 
quadratic function: 

1. Find  
 minΩ(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) = �|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚2 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�
2

+ ℎ2�|∑3
𝑚𝑚=0 (𝛼𝛼𝑚𝑚1 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�

2
+ (19) 

 
 +ℎ4�|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚0 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�
2
 

under constraints of the equality type (10). 
At𝑟𝑟 = 1 we have 
2. Find  
 minΓ(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) = �|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚1 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�
2

+ ℎ2�|∑3
𝑚𝑚=0 (𝛼𝛼𝑚𝑚0 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�

2
 (20) 

 under constraints of the equality type (10). 
By analogy with (13), these problems are equivalent to finding the conditional minimum of 

the functionsΩ(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) andΓ(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) , respectively. 
Just as for the case𝑟𝑟 = 3 , for the case𝑟𝑟 = 2 in formula (19) the summands containingℎ4 

orℎ4 andℎ2 can be discarded. And for𝑟𝑟 = 1 the summand containingℎ2 can be discarded. 
Then we obtain a family of algorithms: for𝑟𝑟 = 2 find  
 minΩ1(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) = �|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚2 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�
2

+ ℎ2�|∑3
𝑚𝑚=0 (𝛼𝛼𝑚𝑚1 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�

2
 (21) 

 or  
 minΩ2(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2) = �|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚2 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�
2
 (22) 

 under constraints of the equality type (10). 
For𝑟𝑟 = 1 we will have a family of methods: find  
 minΓ1(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2, ℎ) = �|∑3

𝑚𝑚=0 (𝛼𝛼𝑚𝑚1 𝑥𝑥𝑖𝑖−3+𝑚𝑚)|�
2
 (23) 

 under constraints of the equality type (10). 
To solve problems (21)-(23) we can apply the method of Lagrange multipliers. The 



conditional minimum of the functions , ,ΩΩ1Ω2 and ,ΓΓ1 in this case is found exactly from the 
solution of the corresponding SLAEs. 

Note that the study of stability and convergence rate of methods (19)-(23) is of separate 
interest. The properties of these algorithms will depend not only on the choice of quadrature 
formulas (see formula (6)), i.e., on the parameters𝑎𝑎 and𝑏𝑏 , but also on the choice of approximation 
of the derivatives of the solution (see formula (12)), i.e., on the parameters𝛼𝛼𝑚𝑚𝑙𝑙 , 0 ≤ 𝑙𝑙,𝑚𝑚 ≤ 3  . 
Different variants of such approaches have been considered. Preliminary analysis of these 
algorithms showed that they have the property of stability. 

 
4. NUMERICAL 

In this section we present calculations of test cases using algorithm (17) with parameters𝑎𝑎 =
1/3(1,4,1,0)𝛵𝛵 ,𝑏𝑏 = 1/4(3,0,9,0)𝛵𝛵 . The results are presented in the form of tables. The designation 
er= max 𝑖𝑖=1,𝑁𝑁|𝑥𝑥(𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑖𝑖|. 

 Example 1 (see [6], p. 149). Consider an IS 
 
 (𝑟𝑟2 + 1) ∫𝑡𝑡0 cos(𝑡𝑡 − 𝜏𝜏)𝑥𝑥(𝜏𝜏)𝑑𝑑𝜏𝜏 = sin(𝑡𝑡) + 𝑟𝑟(exp(𝑟𝑟𝑟𝑟) − cos(𝑡𝑡), 𝑡𝑡 ∈ [0,1], 

the exact solution of which 𝑥𝑥(𝑡𝑡) = exp(𝑟𝑟𝑟𝑟).  The results of calculations at , , 𝑟𝑟 = 1𝑎𝑎 = 1/
3(1,4,1,0)𝛵𝛵𝑏𝑏 = 1/4(3,0,9,0)𝛵𝛵 are presented in Table 1. 

The calculation results of this example at the parameter values , ,𝑎𝑎 = 1/3(0,7, −2,1)𝛵𝛵𝑏𝑏 =
1/4(0,9,0,3)𝛵𝛵𝑟𝑟 = 1 are presented in Table 2. 

 Example 2 (see [6], p. 517). Consider an IS 
 
𝛼𝛼 ∫𝑡𝑡0 exp(𝛼𝛼(𝑡𝑡 − 𝜏𝜏)𝑥𝑥(𝜏𝜏)𝑑𝑑𝜏𝜏 = (exp(𝛼𝛼𝑡𝑡) − exp(−𝛼𝛼𝑡𝑡))/2sin(𝑡𝑡) + 𝑟𝑟(exp(𝑟𝑟𝑟𝑟) − cos(𝑡𝑡), 𝑡𝑡 ∈

[0,1], 
the exact solution of which𝑥𝑥(𝑡𝑡) = exp(−𝛼𝛼𝑡𝑡) . The results of calculations at parameter values , ,𝛼𝛼 =
3𝑎𝑎 = 1/3(1,4,1,0)𝛵𝛵𝑏𝑏 = 1/4(3,0,9,0)𝛵𝛵 are presented in Table 3. 

The results of calculations of this example at the value of parameters , , 𝑎𝑎 = 1/
3(0,7, −2,1)𝛵𝛵𝑏𝑏 = 1/4(0,9,0,3)𝛵𝛵𝛼𝛼 = 3 are presented in Table 4. 

Numerical calculations of these examples agree with the statement. In addition to the above 
examples, numerous calculations of other test cases, which do not contain rigid components, have 
been performed with different parameter choices𝑎𝑎 and𝑏𝑏 using algorithm (17). These experiments 
also agree well with the statement. 

    5.  
In this paper, a class of Volterra integral equations of the first kind has been identified, for 

the numerical solution of which collocation-variational methods of the third order have been 
proposed. These algorithms are reduced to the solution of a mathematical (quadratic) programming 
problem - the target function is quadratic (some analog of the square of the norm of the approximate 
solution) with equality-type constraints (collocation condition). Such a problem is equivalent to 
finding a solution to a nongenerated SLAU. Numerical calculations have shown that further 
development of this approach is promising. Further detailed investigation of collocation-variational 
methods (21)-(23), methods of higher order and for more general problems is planned, in particular, 
for Volterra integral equations having the degree of instability (see [3]) greater than one and for 
equations of the first kind with a kernel containing a weak singularity. 

 
Table 1: Numerical calculations of example 1 at ,𝑟𝑟 = 1𝑎𝑎 = 1/3(1,4,1,0)𝛵𝛵 , 𝑏𝑏 = 1/4(3,0,9,0)𝛵𝛵 

 
 



ℎ  0.1   0.05   0.025  
er 0.0039 0.0006 0.00009 

 
 

 
 

Table 2: Numerical calculations of example 1 at ,𝑟𝑟 = 1𝑎𝑎 = 1/3(0,7, −2,1)𝛵𝛵 , 𝑏𝑏 = 1/4(0,9,0,3)𝛵𝛵 
 

 
ℎ  0.1   0.05   0.025  
er 0.0027 0.0004 0.00006 

 
 

 
 

Table 3: Calculations for example 2 with parameter values , , 𝛼𝛼 = 3𝑎𝑎 = 1/3(1,4,1,0)𝛵𝛵𝑏𝑏 =
1/4(3,0,9,0)𝛵𝛵 

 
 

ℎ  0.1   0.05   0.025  
er 0.085 0.012 0.0018 

 
 

 
 

Table 4: Calculation results of example 2 with the parameters , , 𝛼𝛼 = 3𝑎𝑎 = 1/3(0,7, −2,1)𝛵𝛵𝑏𝑏 =
1/4(0,9,0,3)𝛵𝛵 

 
 

ℎ  0.1   0.05   0.025  
er 0.02 0.0035 0.00052 
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