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Рассматривается построение ускоренного алгоритма решения прямой задачи рассеяния для непрерывного
спектра системы Манакова, ассоциированной с векторным нелинейным уравнением Шрёдингера модели
Манакова. Численная постановка задачи приводит к проблеме быстрого расчета произведений полиномов,
зависимых от спектрального параметра задачи. Для локализованных решений представлен так называемый
“супер-быстрый” алгоритм решения прямой задачи рассеяния второго порядка точности, основанный на
теореме о свертке и быстром преобразование Фурье, требующий для дискретной сетки размером 𝑁 асимп-
тотически всего 𝑂

(︀
𝑁Log2𝑁

)︀
арифметических операций. Для ускорения расчета спектров коэффициентов

отражения предложен и апробирован матричный вариант быстрого преобразования Фурье, когда коэффици-
енты ряда дискретного преобразования Фурье представляют собой некоммутирующие матрицы. Численное
моделирование на примере точного решения системы Манакова (гиперболического секанса) подтвердило
высокую скорость расчетов и второй порядок точности аппроксимации алгоритма. Библ. 24. Фиг. 1.
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1. ВВЕДЕНИЕ

Нелинейное уравнение Шрёдингера (НУШ) представляет собой фундаментальную математическую мо-
дель, описывающую эффекты нелинейно-дисперсионного взаимодействия волн, порождающие уединенные
волны – солитоны (см. [1], [2]). Векторное обобщение НУШ, учитывающее поляризацию волн, известно как
модель Манакова (см. [3]). Эта модель одновременно учитывает эффекты нелинейности, дисперсии и поляри-
зации волн, что представляет исключительный интерес для теоретической физики и нелинейной оптики. В по-
следние годы НУШ и модель Манакова нашли важное применение для описания нелинейно-дисперсионных и
поляризационных эффектов в процессах передачи информации по волоконно-оптическим линиям связи, со-
ставляющим технологическую основу глобальной сети Интернет. Наблюдавшийся в начале века стремитель-
ный взлет производительности (пропускной способности) волоконно-оптических линий, обусловленный про-
грессом современных оптических технологий, в последние годы практически прекратился из-за усиления роли
нелинейно-дисперсионных эффектов, заметно искажающих информационный сигнал (см. [4], [5]). Именно
эти эффекты и описывает в скалярном случае НУШ, а в более близком к реальности векторном случае, т.е.
с учетом поляризации – модель Манакова. Нелинейное векторное уравнение Шрёдингера модели Манакова
имеет следующий нормализованный вид (см. [3]):

i
𝜕q

𝜕𝑡
+

𝜕2q

𝜕𝑥2
− 2σ

⃒⃒
q2

⃒⃒
q = 0, (1.1)

где q (𝑡, 𝑥) = (𝑞, 𝑝) – вектор решения модели Манакова, содержащий две поляризационные нормированные
компоненты поля 𝑞 (𝑡, 𝑥) и 𝑝 (𝑡, 𝑥), 𝑥 – пространственная координата, 𝑡 – временной параметр, i – мнимая еди-
ница. Параметр σ принимает значения +1 или –1 соответственно для дефокусирующего и фокусирующего слу-
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чаев. Заметим, что в задачах, описывающих эволюцию модулированной огибающей оптического сигнала в оп-
тическом волокне, координаты (𝑡, 𝑥) заменяются парой (𝑧, τ), где 𝑧 – расстояние вдоль оптического волокна,
а τ – временной параметр в сопутствующей оптическому импульсу системе отсчета (см. [4]).

Как и НУШ, модель Манакова принадлежит к числу так называемых интегрируемых уравнений, в иссле-
дование которых значительный вклад вносит метод обратной задачи рассеяния (МОЗР) (см. [1], [2]). Этот ме-
тод сводит решение нелинейного уравнения к решению прямых и обратных спектральных задач рассеяния для
некоторой ассоциированной с этим уравнением линейной системы, коэффициенты которой определяются ре-
шениями исходного нелинейного уравнения. Система двух уравнений Захарова–Шабата служит такой ассо-
циированной линейной системой для скалярного НУШ. В случае векторного НУШ модели Манакова задачи
рассеяния ставятся для системы трех линейных уравнений, называемых системой Манакова (см. [3]):

𝜕𝑢 (𝑥)

𝜕𝑥
+ iλ𝑢 (𝑥) = 𝑞 (𝑥) 𝑣 (𝑥) + 𝑝 (𝑥)𝑤 (𝑥) ,

𝜕𝑣 (𝑥)

𝜕𝑥
− iλ𝑣 (𝑥) = σ𝑞* (𝑥)𝑢 (𝑥) ,

𝜕𝑤 (𝑥)

𝜕𝑥
− iλ𝑤 (𝑥) = σ𝑝* (𝑥)𝑢 (𝑥) ,

(1.2)

где λ – собственное значение, (𝑢, 𝑣, 𝑤) – трехмерный собственный вектор волновых амплитуд, причем 𝑢 име-
ет смысл амплитуды падающей волны, 𝑣, 𝑤 – амплитуды отраженных волн, i – мнимая единица, а символ *
обозначает комплексное сопряжение. Система Манакова (1.2) рассматривается при фиксированном параметре
времени 𝑡, который здесь и далее для краткости не указывается в аргументах функций. Система Манакова в фо-
кусирующем случае (σ = −1) содержит дискретный и непрерывный спектры, а в дефокусирующем (σ = +1) –
только непрерывный спектр. Дискретный спектр системы с комплексным спектральным параметром λ соот-
ветствует солитонным решениям НУШ. Непрерывный спектр системы Манакова имеет действительные соб-
ственные значения λ и описывает диспергирующие волны.

С вычислительной точки зрения метод обратной задачи рассеяния, позволивший аналитически исследо-
вать целый ряд нелинейных эволюционных волновых уравнений (см. [1]), оказался мощным инструментом
для эффективного численного решения задачи Коши для этих нелинейных уравнений, причем, без каких-либо
итераций. Его численная реализация требует развития эффективных алгоритмов решения как обратных, так и
прямых задач рассеяния, которым и посвящена настоящая работа, применительно к системе Манакова.

Задачи рассеяния (ЗР) оперируют данными рассеяния, в качестве которых в общем случае служат компо-
ненты матрицы рассеяния (см. [1], [2], [6], [7]). В случае прямой ЗР для непрерывного спектра системы Манако-
ва данные рассеяния содержат амплитуду 𝑎 (λ) падающей волны, амплитуды 𝑏1 (λ) , 𝑏2 (λ) отраженных волн для
каждой из двух поляризаций, а также и амплитуду прошедшей волны 𝑑 (λ). Две поляризационные компонен-
ты вектора решения 𝑞 (𝑥) , 𝑝 (𝑥) следует рассматривать при этом как компоненты рассеивающего потенциала.
Прямая ЗР представляет собой определение данных рассеяния, в частности, коэффициентов отражения и им-
пульсных откликов, по заданному вектору решения (рассеивающему потенциалу) q. Поиск вектора решения
(рассеивающего потенциала) q (𝑥) по данным рассеяния, при фиксированном эволюционном параметре 𝑡, со-
ставляет обратную ЗР для системы Манакова. В настоящей работе мы будем придерживаться более узкой, одна-
ко, более распространенной в приложениях постановки, где в качестве искомых для прямой ЗР принимаются
коэффициенты отражения

𝑟1 (λ) = 𝑏1 (λ) /𝑎 (λ) , 𝑟2 (λ) = 𝑏2 (λ) /𝑎 (λ) . (1.3)

Преобразование Фурье от коэффициентов отражения определяет импульсные отклики 𝑅1,2 (ξ) пары компо-
нент рассеивающего потенциала:

𝑅1,2 (ξ) =
1

2π

∞∫︁
−∞

𝑟1,2 (λ) 𝑒−iλξ𝑑λ. (1.4)

В недавних работах авторов [8]–[11] для решения обратных задач рассеяния системы Манакова были пред-
ложены “быстрые” алгоритмы, основанные на методах окаймления и требующие всего 𝑂(𝑁2) арифметических
операций, где 𝑁 – размер расчетной сетки. Они представляют собой блочно-матричные алгоритмы второго
порядка точности аппроксимации (порядком точности мы называем порядок степенной зависимости погреш-
ности вычислений (остаточного члена) от шага разностной сетки). В одном из алгоритмов применен блочный
вариант окаймления Левинсона, восстанавливающий тёплицеву структуру блочных матриц, путем переноса
некоторых слагаемых дискретных систем уравнений в правую часть. Другой алгоритм был основан на тёплице-
вом разложении (см. [12]) блочной матрицы, близкой к блочно-тёплицевой, и алгоритме окаймления Тыртыш-
никова (см. [13]). Сравнительно недавно в работе [14] были представлены так называемые “супер-быстрые”
алгоритмы решения прямой и обратной ЗР для системы Манакова первого порядка точности аппроксимации.
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Эти алгоритмы для расчетной сетки размером 𝑁 требуют асимптотически всего порядка 𝑂
(︀
𝑁Log2𝑁

)︀
ариф-

метических операций и потому названы “супер-быстрыми”. Аналогичные алгоритмы ранее были предложены
для системы Захарова–Шабата в работе [15]. Однако “супер-быстрые” алгоритмы первого порядка точности
при заданной точности расчетов (норме ошибки) ε заметно менее эффективны, так как асимптотически усту-
пают в быстродействии “быстрым” алгоритмам второго порядка точности, требующим порядка 𝑂

(︀
𝑁2

)︀
ариф-

метических операций. Действительно, “супер-быстрый” алгоритм первого порядка точности требует поряд-
ка 𝑂(ε−1

(︀
Log ε−1

)︀2
) арифметических операций, тогда как “быстрый” алгоритм второго порядка точности при

той же точности расчетов ε потребует всего 𝑂
(︀
ε−1

)︀
операций, поскольку при заданной точности ему требует-

ся дискретная сетка меньшего размера 𝑁 . К настоящему времени порядок точности аппроксимации “супер-
быстрых” алгоритмов (см. [15]) для системы Захарова–Шабата достиг второго. Последующие разделы посвя-
щены построению аналогичного эффективного (точного и быстрого) алгоритма решения прямой задачи для
системы Манакова.

2. ПОСТАНОВКА ЗАДАЧИ РАССЕЯНИЯ

В этой работе рассматривается “супер-быстрый” алгоритм решения прямой ЗР для непрерывного спек-
тра системы Манакова, для случая локализованных (убывающих на бесконечности) решений, второго поряд-
ка точности аппроксимации. Этот алгоритм основан на методе матриц переноса, называемом также методом
трансфер-матриц (МТМ) или методом Т-матриц. МТМ служит основным, базовым методом решения задач
рассеяния в оптических, радиофизических и акустических приложениях (см. [16], [17]). В рамках МТМ непре-
рывная среда разбивается на 𝑁 дискретных слоев, каждый из которых характеризуется трансфер-матрицей 𝑇𝑚,
где 𝑚 – номер слоя. Эта матрица связывает вектор волновых амплитуд (𝑢𝑚, 𝑣𝑚, 𝑤𝑚) в 𝑚-м слое с аналогичным
вектором в соседнем слое.

Для решения трех линейных уравнений системы Манакова требуется три граничных условия. Прямая ЗР для
локализованных потенциалов модели Манакова при постановке граничных условий опирается на асимптотики
волновых решений системы Манакова на бесконечности. Рассматривая, для определенности, правую ЗР, когда
исходная волна падает справа на рассеивающий потенциал, запишем асимптотики решения системы Манакова
в следующем виде (см. [1], [3]):

(𝑢, 𝑣, 𝑤)𝑥→−∞ =
(︀
𝑒−𝑖λ𝑥, 0, 0

)︀
, (𝑢, 𝑣, 𝑤)𝑥→+∞ =

(︀
𝑎 (λ) 𝑒−𝑖λ𝑥, 𝑏1 (λ) 𝑒𝑖λ𝑥, 𝑏2 (λ) 𝑒𝑖λ𝑥

)︀
.

Подобные асимптотики определяют линейно независимые фундаментальные решения системы Манакова, на-
зываемые функциями Йоста.

В численных подходах, где используется конечный носитель, к примеру, интервал [𝑥0, 𝑥𝑁 ], асимптотики
принимают вид граничных условий:

(𝑢0, 𝑣0, 𝑤0) =
(︀
𝑒−𝑖λ𝑥0 , 0, 0

)︀
, (𝑢𝑁 , 𝑣𝑁 , 𝑤𝑁 ) =

(︀
𝑎 (λ) 𝑒−𝑖λ𝑥𝑁 , 𝑏1 (λ) 𝑒𝑖λ𝑥𝑁 , 𝑏2 (λ) 𝑒𝑖λ𝑥𝑁

)︀
, (2.1)

где 𝑢0 = 𝑢 (𝑥0) , 𝑣0 = 𝑣 (𝑥0) , 𝑤0 = 𝑤 (𝑥0) , 𝑢𝑁 = 𝑢 (𝑥𝑁 ) , 𝑣𝑁 = 𝑣 (𝑥𝑁 ) , 𝑤𝑁 = 𝑤 (𝑥𝑁 ).
Решение прямой ЗР сводится к расчету неизвестных спектральных коэффициентов 𝑎 (λ) , 𝑏1 (λ) , 𝑏2 (λ) путем

последовательного умножения трансфер-матриц на вектор-столбец амплитуды прошедшей волны:⎛⎝ 𝑢𝑁

𝑣1,𝑁
𝑣2,𝑁

⎞⎠ = 𝑇𝑁−1𝑇𝑁−2 . . . 𝑇1𝑇0

⎛⎝ 𝑢0

𝑣1,0
𝑣2,0

⎞⎠ .

Используя граничные условия (2.1), для определения данных рассеяния получим⎛⎝ 𝑎 (λ) 𝑒−𝑖λ𝑥𝑁

𝑏1 (λ) 𝑒𝑖λ𝑥𝑁

𝑏2 (λ) 𝑒𝑖λ𝑥𝑁

⎞⎠ = 𝑇𝑁−1𝑇𝑁−2 . . . 𝑇1𝑇0

⎛⎝ 1
0
0

⎞⎠ 𝑒−𝑖λ𝑥0 . (2.2)

Спектральные данные 𝑎 (λ) , 𝑏1 (λ) , 𝑏2 (λ), полученные в результате перемножения матриц в (2.2), далее исполь-
зуются для расчета коэффициентов отражения 𝑟1,2 (λ) по формулам (1.3), а затем и для импульсных откликов
задачи рассеяния 𝑅1,2 (ξ), с помощью численного расчета преобразования Фурье (1.4).

3. ДИСКРЕТИЗАЦИЯ ЗАДАЧИ РАССЕЯНИЯ

Определим по координате 𝑥 равномерную расчетную сетку

𝑥𝑚, 𝑚 = 0, 1, . . . , 𝑁 : 𝑥𝑚 ∈ [−𝐿/2 = 𝑥0, 𝑥1, . . . , 𝑥𝑁 = 𝐿/2] ,
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2414 ФРУМИН и др.

с шагом 𝐿/𝑁 , где 𝐿 = 𝑥𝑁 −𝑥0 – размер интервала. Половину этого шага 𝐿/ (2𝑁) будем обозначать далее, как ℎ.
В узлах сетки находятся дискретные отсчеты поляризационных компонент решения (рассеивающего потенци-
ала) 𝑞𝑚, 𝑝𝑚, 𝑚 = 0, 1, . . . , 𝑁 . Для локализованных потенциалов предполагается, что основная часть потенциала
сосредоточена в пределах выбранного интервала, а на его границах значения компонент потенциала прене-
брежимо малы. Для численного расчета дискретных значений импульсных откликов 𝑅1,2 (ξ) требуется сетка
ξ𝑚 = 2𝑥𝑚, 𝑚 = 0, 1, . . . , 𝑁 , на вдвое большем интервале [−𝐿,𝐿] с шагом ℎ̃ = 2𝐿

𝑁 = 4ℎ. Импульсные откли-
ки определяют непрерывную часть спектра данных рассеяния (ядер) обратной ЗР в интегральной постановке,
опирающейся на уравнения Гельфанда–Левитана–Марченко (ГЛМ). Уравнения ГЛМ представляют собой ин-
тегральный вариант системы Манакова (см. [18]). В дефокусирующем случае импульсные отклики полностью
определяют интегральные ядра этих уравнений. Фурье-преобразование (1.4) при расчете импульсных откликов
требует применения (быстрого) дискретного преобразования Фурье (ДПФ) и соответствующей дискретной сет-
ки в спектральной области λ𝑘 = 𝑘∆λ, 𝑘 = 0, 1, . . . , 𝑁 . Шаг сетки по спектральной переменной ∆λвыбирается
из условия, налагаемого ДПФ: ℎ̃∆λ = 2π/𝑁 , что дает ∆λ = π/𝐿.

Точность численного решения прямой ЗР определяется точностью дискретной аппроксимации трансфер-
матриц 𝑇𝑚. В работе [19] был представлен алгоритм решения прямой ЗР для системы Захарова–Шабата со
вторым глобальным порядком точности аппроксимации. Используя аналогичный подход для системы Мана-
кова (1.2), перепишем ее в следующем виде:(︀

𝑒𝑖λ𝑥𝑢
)︀′

= (𝑞𝑣 + 𝑝𝑤) * 𝑒𝑖λ𝑥,(︀
𝑒−𝑖λ𝑥𝑣

)︀′
= σ𝑞*𝑢 * 𝑒−𝑖λ𝑥,(︀

𝑒−𝑖λ𝑥𝑤
)︀′

= σ𝑝*𝑢 * 𝑒−𝑖λ𝑥,

(3.1)

где штрих обозначает дифференцирование по 𝑥. Интегрируя систему уравнений (3.1) на отрезке [𝑥𝑚, 𝑥𝑚+1],
получим

𝑒𝑖λ𝑥𝑚+1𝑢(𝑥𝑚+1) − 𝑒𝑖λ𝑥𝑚𝑢(𝑥𝑚) =

𝑥𝑚+1∫︁
𝑥𝑚

𝑒𝑖λ𝑥[𝑞𝑣 + 𝑝𝑤]𝑑𝑥,

𝑒−𝑖λ𝑥𝑚+1𝑣(𝑥𝑚+1) − 𝑒−𝑖λ𝑥𝑚𝑣(𝑥𝑚) =

𝑥𝑚+1∫︁
𝑥𝑚

σ𝑒−𝑖λ𝑥𝑞*𝑢𝑑𝑥, (3.2)

𝑒−𝑖λ𝑥𝑚+1𝑤(𝑥𝑚+1) − 𝑒−𝑖λ𝑥𝑚𝑤(𝑥𝑚) =

𝑥𝑚+1∫︁
𝑥𝑚

σ𝑒−𝑖λ𝑥𝑝*𝑢𝑑𝑥.

Заменим интегралы в (3.2) по формуле трапеций с третьим локальным порядком точности аппроксимации
𝑂
(︀
ℎ3

)︀
:

𝑢𝑚+1 − 𝑒−2𝑖λℎ𝑢𝑚 = ℎ
(︀
𝑞𝑚+1𝑣𝑚+1 + 𝑝𝑚+1𝑤𝑚+1 + 𝑒−2𝑖λℎ(𝑞𝑚𝑣𝑚 + 𝑝𝑚𝑤𝑚)

)︀
,

𝑣𝑚+1 − 𝑒2𝑖λℎ𝑣𝑚 = σℎ(𝑞*𝑚+1𝑢𝑚+1 + 𝑒2𝑖λℎ𝑞*𝑚𝑢𝑚), (3.3)

𝑤𝑚+1 − 𝑒2𝑖λℎ𝑤𝑚 = σℎ(𝑝*𝑚+1𝑢𝑚+1 + 𝑒2𝑖λℎ𝑝*𝑚𝑢𝑚).

Обозначим 𝑧 = 𝑒2𝑖λℎ, и запишем систему (3.3) в матричном виде:⎡⎣ 1 −ℎ𝑞𝑚+1 −ℎ𝑝𝑚+1

−σℎ𝑞*𝑚+1 1 0
−σℎ𝑝*𝑚+1 0 1

⎤⎦⎛⎝ 𝑢𝑚+1

𝑣𝑚+1

𝑤𝑚+1

⎞⎠ =

⎡⎣ 𝑧−1 ℎ𝑧−1𝑞𝑚 ℎ𝑧−1𝑝𝑚
σℎ𝑧𝑞*𝑚 𝑧 0
σℎ𝑧𝑝*𝑚 0 𝑧

⎤⎦⎛⎝ 𝑢𝑚

𝑣𝑚
𝑤𝑚

⎞⎠ . (3.4)

Обратной к матрице, стоящей первой слева в (3.4), является матрица

1

1 − σℎ2
(︁
|𝑞𝑚+1|2 + |𝑝𝑚+1|2

)︁
⎡⎣ 1 ℎ𝑞𝑚+1 ℎ𝑝𝑚+1

σℎ𝑞*𝑚+1 1 − σℎ2|𝑝𝑚+1|2 σℎ2𝑞*𝑚+1𝑝𝑚+1

σℎ𝑝*𝑚+1 σℎ2𝑞𝑚+1𝑝
*
𝑚+1 1 − σℎ2|𝑞𝑚+1|2

⎤⎦ .

Умножив слева систему (3.4) на эту матрицу, опуская члены с ℎ3 и приближенно принимая ℎ2𝑝𝑚+1 = ℎ2𝑝𝑚 +
+𝑂

(︀
ℎ3

)︀
и ℎ2𝑞𝑚+1 = ℎ2𝑞𝑚 + 𝑂

(︀
ℎ3

)︀
, запишем итоговую трансфер-матрицу 𝑇𝑚:

𝑇𝑚 =

⎡⎣1 + σℎ2ζ(|𝑞𝑚|2 + |𝑝𝑚|2) ℎ(𝑞𝑚 + ζ𝑞𝑚+1) ℎ(𝑝𝑚 + ζ𝑝𝑚+1)
σℎ(𝑞*𝑚+1 + ζ𝑞*𝑚) ζ− σℎ2(ζ|𝑝𝑚|2 − |𝑞𝑚|2) σℎ2𝑞*𝑚𝑝𝑚(1 + ζ)
σℎ(𝑝*𝑚+1 + ζ𝑝*𝑚) σℎ2𝑝*𝑚𝑞𝑚(1 + ζ) ζ− σℎ2(ζ|𝑞𝑚|2 − |𝑝𝑚|2)

⎤⎦ , (3.5)
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где обозначено ζ = 𝑧2 = 𝑒4𝑖λℎ = 𝑒𝑖λℎ̃. У этой матрицы опущен общий множитель 𝑧−1

1−σℎ2(|𝑞𝑚+1|2+|𝑝𝑚+1|2)
. При рас-

чете коэффициентов отражения в виде отношения коэффициентов 𝑟1,2 (λ) = 𝑏1,2 (λ) /𝑎 (λ) общий множитель
𝑏1,2 (λ) и 𝑎 (λ) сокращается, однако его необходимо учитывать, если требуется расчет коэффициента прохожде-
ния 𝑑 (λ).

4. “СУПЕР-БЫСТРЫЙ” АЛГОРИТМ РЕШЕНИЯ ПРЯМОЙ ЗАДАЧИ

Все элементы 𝑡𝑚;𝑖𝑗 полученной матрицы в (3.5) 𝑇𝑚 представляют собой биномы вида 𝑡𝑚;𝑖𝑗 = α𝑚;𝑖𝑗 + ζβ𝑚;𝑖𝑗,

т.е. полиномы первого порядка от спектрального параметра ζ = 𝑒𝑖λℎ̃. Эти биномы можно представить в виде
матричных биномов:

𝑇𝑚 = 𝐴𝑚 + ζ𝐵𝑚.

Здесь 𝐴𝑚 и 𝐵𝑚 – матрицы размером 3 × 3 с элементами соответственно α𝑚;𝑖𝑗 , β𝑚;𝑖𝑗 .
Расчет произведения трансфер-матриц (2.2) сводится к вычислению произведений полиномов. Спек-

тральные данные рассеяния 𝑎 (λ) , 𝑏1 (λ) , 𝑏2 (λ) в итоге принимают вид полиномов 𝑁-й степени от парамет-
ра ζ = 𝑒𝑖λℎ̃. В результате мы получаем полиномиальную аппроксимацию спектральных данных. Расчет
этих полиномов на дискретной спектральной сетке определяет дискретизованные спектры данных рассеяния
𝑎 (λ𝑘) , 𝑏1 (λ𝑘) , 𝑏2 (λ𝑘) , 𝑘 = 0, 1, . . . , 𝑁 . Дискретизованные спектры отражения представляют собой соответству-
ющие отношения полиномов 𝑟1,2 (λ𝑘) = 𝑏1,2 (λ𝑘) /𝑎 (λ𝑘) для аргумента λ𝑘.

Последовательное перемножение всех трансфер-матриц 𝑇𝑚 размерностью 3×3, элементы которых являют-
ся биномами, приводит к алгоритму, основным вычислительным этапом которого является умножение поли-
номов (элементов матриц) на бином. При каждом таком перемножении степень результирующих полиномов
будет увеличиваться на единицу. На 𝑘-м шаге процесса перемножения матриц для каждого из девяти элемен-
тов результирующей матрицы требуется умножить 𝑘+1 коэффициент полинома на два коэффициента бинома.
Суммарное число операций умножения при этом составит для каждого элемента

∑︀𝑁−1
𝑘=1 2 (𝑘 + 1) = 𝑁2 +𝑁 − 2.

Число сложений имеет такой же порядок величины 𝑂
(︀
𝑁2

)︀
.

В работе [15], применительно к системе Захарова–Шабата, был предложен более быстрый способ пере-
множения 𝑁 = 2𝑀 матриц, основанный на алгоритме дублирования и быстром дискретном преобразова-
нии Фурье. В процессе перемножения трансфер-матриц они разбиваются на соседние пары. Сначала пере-
множаются эти пары, и получается 𝑁/2 матриц с элементами в виде полиномов 2-го порядка. Результаты та-
кого парного перемножения снова разбиваются на пары, затем эти новые пары перемножаются. Процедура
перемножения полиномов повторяется 𝑀 − 1 = Log2 (𝑁) − 1 раз. Степень результирующего полинома при
каждом перемножении удваивается. На 𝑘-м шаге перемножается 2𝑀−𝑘 пар полиномов. Каждый из них име-
ет степень 2𝑘−1 и после приведения общих членов содержит 2𝑘−1 + 1 коэффициентов. Перемножение па-
ры таких полиномов потребует

(︀
2𝑘−1 + 1

)︀2
умножений. Полное число умножений пар полиномов составит∑︀𝑀−1

𝑘=1

(︀
2𝑘−1 + 1

)︀2
2𝑀−𝑘 = 𝑀2𝑀 +22(𝑀−1)−2𝑀−1−2. Таким образом, по порядку величины этот способ расчета

приводит к оценке числа операций 𝑂
(︀
22(𝑀−1)

)︀
= 𝑂

(︀
𝑁2/4

)︀
.

Для системы Захарова–Шабата в работе [15] для еще большего ускорения расчетов произведений поли-
номов было предложено использовать теорему о свертке. Пусть на 𝑘-м шаге попарного произведения мат-
риц полином степени 𝑛 = 2𝑘−1 умножается на другой полином той же степени. Произведение полиномов
𝑎0 + 𝑎1ζ + 𝑎2ζ

2 + . . . + 𝑎𝑛ζ
𝑛 и 𝑏0 + 𝑏1ζ + 𝑏2ζ

2 + . . . + 𝑏𝑛ζ
𝑛 дает полином степени 2𝑛 = 2𝑘 с коэффициента-

ми 𝑐𝑗 , 𝑗 = 0, 1, . . . , 2𝑛. Если дополнить нулевыми коэффициентами оба исходных полинома до степени 2𝑛, то
коэффициенты 𝑐𝑗 результирующего полинома можно представить в виде дискретной свертки:

𝑐𝑗 =

𝑗∑︁
𝑠=0

𝑎𝑠𝑏𝑗−𝑠, 𝑗 = 0, 1, . . . , 2𝑛. (4.1)

Прямое вычисление свертки потребует
∑︀𝑗=2𝑛

𝑗=0 (𝑗 + 1) = 2𝑛2 + 3𝑛+ 1 умножений и почти столько же сложений.
Число арифметических операций можно значительно уменьшить, если применить теорему о свертке. Согласно
этой теореме свертку (4.1) можно вычислить как обратное дискретное преобразование Фурье от почленного
произведения векторов дискретных преобразований Фурье от коэффициентов исходных массивов:

𝑐 = 𝐼𝐹𝐹𝑇
(︀
𝐹𝐹𝑇 (𝑎) · 𝐹𝐹𝑇 (𝑏)

)︀
. (4.2)

Здесь точка “·” обозначает почленное произведение векторов, дискретных фурье-образов полиномов 𝑎 и 𝑏, а
прямое и обратное дискретные преобразования Фурье обозначены как 𝐹𝐹𝑇 и 𝐼𝐹𝐹𝑇 соответственно, что ука-
зывает на использование быстрого дискретного преобразования Фурье (БПФ – fast Fourier transform) (см. [20]).
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Как известно, быстрые дискретные преобразования Фурье для массива размером𝑁 = 2𝑀 требуют всего поряд-
ка 𝑂 (𝑁𝑀) = 𝑂 (𝑁Log2𝑁) умножений. Оценку полного числа умножений пары полиномов, с учетом почлен-
ного умножения фурье-образов в (4.2), дает сумма

∑︀𝑀−1
𝑘=1

(︀
2𝑘 (𝑘 + 2)

)︀
2𝑀−𝑘 = 𝑁𝑀2/2 + 3/2𝑁𝑀 − 2𝑁. В ре-

зультате для итогового числа операций умножения для такого “супер-быстрого” алгоритма получаем асимпто-
тическую оценку

𝑂
(︀
𝑁(Log22𝑁 + 3 Log2𝑁

)︀
. (4.3)

В оценке (4.3) помимо квадратичного оставлено линейное по Log2𝑁 слагаемое, которое для диапазона уме-
ренных значений 𝑀 = Log2𝑁 ∼ 7−13 дает заметный вклад в итоговую оценку числа операций умножения.
Мы не приводим здесь оценку числа операций сложения, полагая, что оценка числа умножений дает вполне
удовлетворительную асимптотическую оценку полного числа арифметических операций.

В процессе расчета произведения пары матричных полиномов на каждом шаге перемножения требуется с
помощью БПФ вычислять девять полиномов, по числу элементов матрицы размером 3 × 3. В работе [21], где
рассматривалось быстрое перемножение полиномов с матричными коэффициентами с помощью теоремы о
свертке и ДПФ, отмечается, что число вычислений ДПФ можно уменьшить, учитывая, что каждый полином
как элемент матрицы размером, например, 3×3 в процессе вычисления произведений матриц трижды подвер-
гается преобразованию Фурье. Использование памяти для запоминания результата БПФ позволяет выполнить
только одно преобразование, и тем самым заметно сократить число требуемых арифметических операций. Та-
кую же экономию числа операций может давать матричный вариант быстрого ДПФ для матричных полиномов,
коэффициенты которых представляют собой некоммутирующие в общем случае матрицы. Матричный вариант
БПФ кратко рассмотрен в разд. 6.

5. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРЯМОЙ ЗР

Для тестирования алгоритма использовалось следующее точное решение системы Манакова – гиперболи-
ческий секанс (см. [22], [23]):

𝑞(𝑥, 𝑡 = 0) = 𝐴 sch(𝑥− 𝑥𝑐) sin(ϕ),

𝑝(𝑥, 𝑡 = 0) = 𝐴 sch(𝑥− 𝑥𝑐) cos(ϕ),

где ϕ– угол, определяющий поляризацию, 𝐴 — амплитуда секанса, 𝑥𝑐 — координата его центра. Спектральные
коэффициенты отражения для такого решения для непрерывного спектра (вещественные λ ) имеют следующий
вид:

𝑟1(λ) = − sin(π𝐴)

ch(πλ)

Γ(−𝑖λ+ 𝐴 + 1
2 )Γ(−𝑖λ−𝐴 + 1

2 )

Γ(−𝑖λ+ 1
2 )2

𝑒−2𝑖λ𝑥𝑐 sin(ϕ), (5.1)

𝑟2(λ) = − sin(π𝐴)

ch(πλ)

Γ(−𝑖λ+ 𝐴 + 1
2 )Γ(−𝑖λ−𝐴 + 1

2 )

Γ(−𝑖λ+ 1
2 )2

𝑒−2𝑖λ𝑥𝑐 cos(ϕ). (5.2)

Здесь Γ – гамма-функция Эйлера. Гиперболический секанс – это, по существу, решение системы Захаро-
ва–Шабата, “повернутое” на поляризационный угол ϕ. Помимо непрерывного спектра гиперболический се-
канс порождает также и дискретный спектр (см. [22], [23]). Прямая ЗР для секанс-потенциала рассматривалась
на интервале 𝑥 ∈ [−30, 30] при следующем наборе параметров: 𝐴 = 0.25,ϕ = 2π/3. Численное моделирова-
ние прямой задачи рассеяния с помощью представленного супер-быстрого алгоритма и сравнение результатов
расчетов с точными формулами (5.1), (5.2) показало, что при увеличении размера 𝑁 задачи (размера дискрет-
ной сетки) вдвое, среднеквадратичная норма ошибки расчета спектральных коэффициентов отражения падает
в 4 раза, что подтверждает второй порядок точности расчетов. В качестве примера приведем значения евкли-
довых норм ε абсолютной ошибки расчета вектора импульсного отклика (5.1), (5.2) при 𝑁 = 211 и 𝑁 = 212:
ε = 0.00014385 и ε = 0.00003597 соответственно. Отношение этих ошибок равно 3.99917.

В ходе численного моделирования рассматривалась зависимость времени решения прямой задачи рассея-
ния Time от размера задачи 𝑁 . Эта зависимость иллюстрируется на фиг. 1.

График на фиг. 1 показывает, что зависимость времени расчета Time (в секундах), деленного на размер за-
дачи 𝑁 , хорошо аппроксимируется квадратичной зависимостью 𝑎 + 𝑏𝑀 + 𝑐𝑀2. Выше, на примере операций
умножения, уже отмечалось, что при умеренных значениях 𝑀 линейное по 𝑀 слагаемое дает заметный вклад,
сравнимый с вкладом квадратичного. Асимптотически, с ростом 𝑀 , основной вклад станет давать квадратич-
ное по 𝑀 слагаемое, и итоговая оценка числа операций будет соответствовать оценке 𝑂

(︀
𝑁Log22𝑁

)︀
.
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Time[sec]/N

Log N2

Фиг. 1. Зависимость времени расчета Time (в секундах) от размера задачи 𝑁 для прямой задачи рассеяния для системы
Манакова “супер-быстрым” алгоритмом. Кружки – дискретные значения Time/𝑁 . Сплошная кривая – аппроксимация
параболой от аргумента 𝑀 = Log2𝑁 .

6. МАТРИЧНЫЙ АЛГОРИТМ БПФ

Для локализованных потенциалов в предыдущих разделах был представлен быстрый алгоритм решения пря-
мой задачи рассеяния, второго порядка точности, основанный на теореме о свертке и быстром преобразование
Фурье. В поисках еще большего ускорения расчетов был реализован матричный вариант быстрого преобразо-
вания Фурье, когда коэффициенты ряда дискретного преобразования Фурье представляют собой некоммути-
рующие матрицы, возникающие при парном перемножении матриц, начиная с биномов 𝐴𝑚 + ς𝐵𝑚.

Детальный анализ алгоритма БПФ по основанию 2 для варианта, предложенного Кули и Тьюки (см. [20]),
показывает, что этот алгоритм не требует коммутативности коэффициентов дискретного ряда Фурье. Следо-
вательно, его можно распространить на конечные ряды Фурье, коэффициенты которых представляют собой
некоммутирующие объекты, например, матрицы. Для некоммутирующих коэффициентов рядов Фурье тео-
рема о свертке выполняется, если не изменяется исходный порядок умножения. Такой матричный алгоритм
БПФ был реализован и протестирован, на примере теоремы о свертке, для конечных рядов с коэффициентами
в виде случайных матриц. Матричный алгоритм заметно упрощает схему алгоритма, и ожидалось, что он поз-
волит уменьшить число арифметических операций и вызовов тригонометрических функций. Однако больших
преимуществ в скорости расчета матричный алгоритм БПФ не дает, если применение “обычного” скалярного
алгоритма БПФ достаточно оптимизировано.

Ускорение расчетов прямой ЗР в перспективе можно достичь с помощью так называемых теоретико-
числовых преобразований Ферма, Мерсенна и др (см. [24]) в суррогатных полях, например, в полях Галуа, где
тригонометрические функции заменяются на целочисленные выражения. Теоретико-числовые “спектры” хотя
и не имеют того физического смысла, какой имеют фурье-спектры, однако для них тоже выполняется теоре-
ма о свертке. Использование целочисленной арифметики при расчете сверток полиномов позволит в будущем
еще более ускорить расчеты прямой ЗР.

7. ЗАКЛЮЧЕНИЕ

Предложен алгоритм “супер-быстрого” решения прямых задач рассеяния для непрерывного спектра систе-
мы Манакова, ассоциированной с векторным нелинейным уравнением Шрёдингера модели Манакова, требу-
ющий для дискретной сетки размером 𝑁 асимптотически порядка 𝑂

(︀
𝑁Log22𝑁

)︀
арифметических операций.

Алгоритм имеет второй порядок точности для гладких локализованных (убывающих на бесконечности) ре-
шений прямой задачи рассеяния для непрерывного спектра системы Манакова. Этот алгоритм находит поли-
номиальную аппроксимацию зависимости спектральных данных (коэффициентов рассеяния 𝑎 (λ) , 𝑏1,2 (λ)) от

спектрального параметра ζ = 𝑒𝑖λℎ̃, которые определяют спектральные коэффициенты отражения 𝑟1,2 (λ). Для
ускорения расчетов прямой задачи рассеяния для системы Манакова используется теорема о свертке и быст-
рое преобразование Фурье. Предложен и апробирован матричный вариант быстрого преобразования Фурье,
когда коэффициенты ряда дискретного преобразования Фурье представляют собой некоммутирующие матри-
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цы. При применении матричного алгоритма заметно упрощается структура алгоритма и оптимизируется число
вычислений тригонометрических функций и арифметических операций. Впрочем, скалярный вариант алго-
ритма, при должной оптимизации, не уступает в быстродействии матричному алгоритму. Полученная полино-
минальная аппроксимация спектральной зависимости коэффициентов рассеяния может быть использована в
дальнейшем для поиска дискретного спектра системы Манакова.
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Abstract. The construction of an accelerated algorithm for solving the direct scattering problem for the
continuous spectrum of the Manakov system associated with the vector nonlinear Schrodinger equation of
the Manakov model is considered. The numerical formulation of the problem leads to the problem of quickly
calculating the products of polynomials dependent on the spectral parameter of the problem. For localized
solutions, the so-called “super-fast” algorithm for solving the direct scattering problem of the second order
of accuracy is presented, based on the convolution theorem and the fast Fourier transform, which requires
asymptotically only 𝑂

(︀
𝑁 Log2𝑁

)︀
arithmetic operations for a discrete grid of size 𝑁 . To speed up the

calculation of the reflection coefficient spectra, a matrix variant of the fast Fourier transform is proposed
and tested, when the coefficients of a series of discrete Fourier transforms are non-commuting matrices.
Numerical simulation using the example of the exact solution of the Manakov system (hyperbolic secant)
confirmed the high calculation speed and the second order of accuracy of the algorithm approximation.

Keywords: Schrodinger equation, Manakov system, direct scattering problem, transfer matrix, convolution,
Fourier transform.
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