УДК 517.977.5

ОБРАТНАЯ ЗАДАЧА ДЛЯ КВАЗИСТАЦИОНАРНЫХ УРАВНЕНИЙ СЛОЖНОГО ТЕПЛООБМЕНА С ФРЕНЕЛЕВСКИМИ УСЛОВИЯМИ СОПРЯЖЕНИЯ¹⁾

© 2024 г. А.Ю. Чеботарев^{1,*}

¹ 690041 Владивосток, ул. Радио, 7, ИПМ ДВО РАН, Россия *e-mail: cheb@iam.dvo.ru

> Поступила в редакцию 21.02.2024 г. Переработанный вариант 19.04.2024 г. Принята к публикации 28.06.2024 г.

Рассматривается нестационарная обратная задача для нелинейной параболико-эллиптической системы, моделирующей сложный теплообмен с френелевскими условиями сопряжения на поверхностях разрыва коэффициента преломления. Доказана нелокальная по времени однозначная разрешимость обратной задачи. Библ. 22.

Ключевые слова: квазистационарные уравнения радиационного теплообмена, френелевские условия сопряжения, обратная задача, нелокальная разрешимость.

DOI: 10.31857/S0044466924100088, EDN: KACZVB

1. ВВЕДЕНИЕ

Анализ краевых и обратных задач для диффузионных уравнений сложного теплообмена важен для приложений в технике и медицине [1–4]. Как показано в [5,6], существенный вклад в распределение температурных полей в многокомпонентных средах с различными коэффициентами преломления вносят эффекты отражения и преломления на поверхностях разрыва коэффициента преломления. В [5–7] представлены условия сопряжения, моделирующие указанные эффекты в рамках диффузионной модели, использующей P_1 -приближение для уравнения переноса теплового излучения. Настоящая работа посвящена анализу обратной задачи для квазистационарной диффузионной модели сложного теплообмена в многокомпонентной среде. Задача заключается в отыскании неизвестной интенсивности тепловых источников, моделируемых некоторым функционалом, а также соответствующих полей температуры и теплового излучения, по заданным значениям функционала на решении начально-краевой задачи.

Нелинейные краевые и обратные задачи, моделирующие сложный теплообмен в рамках P_1 -приближения без учета эффектов отражения и преломления на границах подобластей с различными коэффициентами преломления, изучены достаточно подробно [1, 8–10]. Стационарная обратная задача для модели с френелевскими условиями сопряжения рассмотрена в [11]. В [6, 12] проведен анализ квазистационарных начально-краевых задач для уравнений сложного теплообмена в многокомпонентной области. Следует также отметить работы [13—18], посвященные анализу моделей сложного теплообмена, включающих интегродифференциальное уравнение переноса излучения. Исследование различных обратных задач для математических моделей тепломассопереноса представлено в [19—21].

Нестационарный сложный теплообмен будем рассматривать в ограниченной липшицевой области $\Omega \subset \mathbb{R}^3$, содержащей конечное число липшицевых подобластей $\Omega_j, j=1,\ldots,p$, замыкания которых не пересекаются и принадлежат Ω . $\Omega_0=\Omega\setminus (\bigcup_{j=1}^p \bar{\Omega}_j)$ — внешняя подобласть, $\Gamma=\partial\Omega\subset \Gamma_0=\partial\Omega_0, \Gamma_j=\partial\Omega_j\subset \Gamma_0, j=1,\ldots,p$. Процесс теплообмена моделируется (в рамках P_1 -приближения для уравнения переноса излучения) в каждой из областей $\Omega_j, j=0,\ldots,p$, при $t\in (0,T)$ следующими уравнениями:

$$r\frac{\partial \theta}{\partial t} - a\Delta\theta + b(\theta^3|\theta| - \varphi) = q(t)f, \quad -\alpha\Delta\varphi + \beta(\varphi - \theta^3|\theta|) = 0. \tag{1}$$

¹⁾ Работа выполнена в рамках государственного задания ИПМ ДВО РАН (№075-00459-24-00)

1882 ЧЕБОТАРЕВ

Здесь θ — нормализованная температура и ϕ — нормализованная интенсивность теплового излучения, усредненная по всем направлениям. Положительные кусочно-постоянные параметры r, a, b, α и β , описывающие свойства среды, определены в [5]. Функция f описывает пространственное распределение тепловых источников, а функция времени q их интенсивность. На границе $\Gamma = \partial \Omega$ ставятся краевые условия третьего рода

$$a\partial_n \theta + c(\theta - \theta_b)|_{\Gamma} = 0, \quad \alpha \partial_n \varphi + \gamma(\varphi - \theta_b^4)|_{\Gamma} = 0,$$
 (2)

где θ_b — заданная граничная температура, c — коэффициент теплопередачи, $0<\gamma\leq 1/2$ — параметр, зависящий от коэффициента излучения поверхности. На внутренних границах $\Gamma_j = \partial \Omega_j, j = 1, \dots, p$, заданы условия сопряжения для температуры $\theta_i = \theta|_{\Omega_i}$ и интенсивности излучения $\varphi_i = \varphi|_{\Omega_i}$, полученные в [5]

$$\theta_0 = \theta_j, \quad a_0 \partial_n \theta_0 = a_j \partial_n \theta_j, \tag{3}$$

$$n_0^2 \alpha_0 \partial_n \varphi_0 = n_j^2 \alpha_j \partial_n \varphi_j, \quad h_j(\varphi_j - \varphi_0) = \alpha_0 \partial_n \varphi_0. \tag{4}$$

Здесь $a_i, \alpha_i, n_i = a, \alpha, n|_{\Omega_i}, h_i > 0$ — параметры, зависящие от коэффициентов отражения на внутренних границах. Через ∂_n в краевых условиях и условиях сопряжения обозначаем производные в направлении внешней нормали \mathbf{n} к границе $\partial \Omega$ или $\partial \Omega_i$.

Ставятся также начальные условия для температуры,

$$\theta|_{t=0} = \theta_0. \tag{5}$$

Замечание 1. Условия (4) выводятся из френелевских условиях сопряжения на Γ_i для интенсивности излучения I, не усредненной по направлениям, при использовании P_1 -приближения для I и интегрировании указанных условий по направлениям входящих лучей для каждой подобласти. Здесь следует отметить, что при приближении к границе области или к границе неоднородности нормальная производная усредненного решения уравнения переноса излучения имеет особенность, которая фактически не учитывается при выводе краевого условия для ф и условий сопряжения. Таким образом, в рассматриваемой модели не учитывается, что вблизи границы решение уравнения переноса имеет пограничный слой. Тем не менее, как показывают примеры численного моделирования [22], разница температурных полей для диффузионной и полной модели сложного теплообмена не является столь значительной.

Статья организована следующим образом. В разд. 2 приводится формализация начально-краевой задачи (1)—(5), дается постановка обратной задачи и ее преобразование. Разрешимость обратной задачи доказана в разд. 3. Теорема единственности решения обратной задачи представлена в разд. 4, а в разд. 5 представлено доказательство вспомогательных результатов.

Основной результат работы состоит в доказательстве нелокальной по времени разрешимости обратной задачи.

2. СЛАБАЯ ФОРМУЛИРОВКА НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ. ПОСТАНОВКА ОБРАТНОЙ ЗАДАЧИ

Через L^s , $1 \le s \le \infty$, будем обозначать пространства Лебега s-интегрируемых функций и, соответственно, через $H^s=W^s_2$ — пространства Соболева; $H=L^2(\Omega),\,V=H^1(\Omega),$

$$W = \{ w \in H, \ w_j = w |_{\Omega_j} \in H^1(\Omega_j), \ j = 0, ..., p \}.$$

Пространство H будем отождествлять с сопряженным пространством $H', V \subset W \subset H = H' \subset W' \subset V'.$ Через (f,v) обозначаем значение функционала $f \in V'$ на элементе $v \in V$ и скалярное произведение в H, если $f, v \in H$;

$$||v||^2 = (v, v); (v, w)_j = (v, w)_{L^2(\Omega_j)}, ||v||_j^2 = (v, v)_j; (v, w)_W = \sum_{j=0}^p (v, w)_{H^1(\Omega_j)}.$$

Через $L^p(0,T;X)$ (соотв. C([0,T],X)) обозначаем пространство строго измеримых функций класса L^p (соотв. непрерывных), определенных на [0,T], со значениями в банаховом пространстве X; D'(0,T) — пространство распределений на (0,T).

Пусть данные начально-краевой задачи удовлетворяют следующим условиям:

- (i) $c, \gamma \in L^{\infty}(\Gamma), c \geq c_0 > 0, \gamma \geq \gamma_0 > 0, c_0, \gamma_0 = \text{const};$
- (ii) $\{a,b,r,\alpha,\beta,n|\}_{\Omega_j} = \{a_j,b_j,r_j,\alpha_j,\beta_j,n_j\} > 0, \ b = \sigma \beta n^2, \ \sigma = {\rm const} > 0;$ (iii) $0 \le \theta_b \in L^\infty(\Gamma \times (0,T)); \ f \in V', \ q \in H^{-1}(0,T).$

Введем операторы $A_1: V \to V', A_2: W \to W'$ и функции $f_b \in L^2(0,T;V'), g_b \in L^2(0,T;W')$, используя равенства, справедливые для $\theta, \eta \in V, \varphi, w \in W$:

$$(A_1\theta, \eta) = (a\nabla\theta, \nabla\eta) + \int_{\Gamma} c\theta\eta d\Gamma,$$

$$\frac{1}{\sigma}(A_2\varphi, w) = \sum_{j=0}^{p} \alpha_j n_j^2 (\nabla\varphi, \nabla w)_j + n_0^2 \int_{\Gamma} \gamma\varphi w d\Gamma + n_0^2 \sum_{j=1}^{p} h_j \int_{\Gamma_j} (\varphi_0 - \varphi_j)(w_0 - w_j) d\Gamma,$$

$$(f_b, \eta) = \int_{\Gamma} c\theta_b \eta d\Gamma, \quad (g_b, w) = \sigma n_0^2 \int_{\Gamma} \gamma\theta_b^4 w d\Gamma.$$

Здесь $\{\varphi_i, w_i\} = \{\varphi, w\}|_{\Omega_i}$.

Скалярное произведение и норму в пространстве V, эквивалентную стандартной, определим, используя оператор A_1 , $(u,v)_V=(A_1u,v)$, $\|v\|_V^2=(A_1v,v)$. Для возрастающей степенной функции используем обозначение $[\lambda]^l=|\lambda|^l \mathrm{sign}\, \lambda,\, l>0,\, \lambda\in\mathbb{R}.$

Определение. Пара $\theta \in L^2(0,T;V) \cap C([0,T],H) \cap L^5(Q)$, $\varphi \in L^{5/4}(0,T;W)$ называется слабым решением задачи (1)—(5), если для всех $v \in V$

$$(r\theta' + A_1\theta + b([\theta]^4 - \varphi) - f_b - q(t)f, v) = 0 \text{ B } D'(0,T), \quad A_2\varphi + b(\varphi - [\theta]^4) = g_b \quad t \in (0,T)$$
(6)

и при этом $\theta(0) = \theta_0$. Здесь и далее $Q = \Omega \times (0, T)$.

Слабая формулировка задачи (1)—(4) получается стандартным образом путем умножения уравнений (1) на тестовые функции $\eta \in V$ и $\sigma n^2 \psi \in W$ соответственно, интегрирования по частям по областям Ω_j , сложения полученных равенств и применения краевых условий (2) и условий сопряжения (3),(4).

Замечание 2. В статье [12] доказано, что при выполнении условий (i)-(iii), если при этом $q\in L^2(0,T)$, существует единственное решение $\{\theta,\phi\}$ задачи (6) такое, что $\theta\in L^2(0,T;V)\cap L^5(0,T;L^5(\Omega)),\ r\theta'\in L^2(0,T;V')+L^{5/4}(Q),\ \phi\in L^{5/4}(0,T;W).$

Постановка и преобразование обратной задачи

Задача (IP). Найти $q \in H^{-1}(0,T), \theta \in L^2(0,T;V) \cap C([0,T],H) \cap L^5(Q), \phi \in L^{5/4}(0,T;W)$, удовлетворяющие (6) и дополнительному условию

$$(f, \theta(t)) = s(t), \quad t \in (0, T). \tag{7}$$

Здесь $s \in H^1(0,T)$ — заданная функция.

Замечание 3. Типичным примером обратной задачи, возникающей, например, при моделировании процессов лазерной абляции [2], является задача, в которой требуется определить какую интенсивность в зависимости от времени должен иметь тепловой источник, локализованный, например, в Ω_1 , чтобы обеспечить в области Ω_1 заданную среднюю температуру. В этом случае f(x)=1, если $x\in\Omega_1$ и f(x)=0, если $x\in\Omega\setminus\Omega_1$, а условие переопределения имеет вид $\int_{\Omega_1} \theta dx = s(t), \quad t\in(0,T)$. Учитывая, что в постановке задачи (IP) $f\in V'$, могут быть рассмотрены обратные задачи с неизвестными интенсивностями поверхностных тепловых источников, обеспечивающих требуемую среднюю температуру на рассматриваемой поверхности.

Преобразуем постановку задачи (IP), исключив функции φ,q . Заметим сразу, что билинейная форма $\{\varphi,\psi\}\to (A_2\varphi+b\varphi,\psi)$ непрерывна, симметрична и положительно определена в пространстве W. Из леммы Лакса-Мильграма следует, что для каждого $\eta\in W'$ существует единственное решение $\varphi\in W$ уравнения $A_2\varphi+b\varphi=\eta$ и оператор $(A_2+bI)^{-1}:W'\to W$ непрерывен. Поэтому из второго уравнения в (6) следует, что $\varphi=(A_2+bI)^{-1}(g_b+b[\theta]^4)$, первое уравнение можно записать в виде

$$(r\theta' + A_1\theta + B(b[\theta]^4) - g - q(t)f, v) = 0 \text{ B } D'(0, T).$$
(8)

Здесь $B = A_2(A_2 + bI)^{-1} : W' \to W', g = f_b + b(A_2 + bI)^{-1}g_b \in L^2(0,T;V').$

Для исключения интенсивности источников q рассмотрим пространства $V_0=\mathrm{Ker} f=\{z\in V: (f,z)=0\}$ и H_0 — замыкание V_0 по норме $H,\,V_0\subset H_0=H_0'\subset V_0'.$ Пусть $\tilde f\in V,\,(f,\tilde f)=1.$ Будем искать компоненту θ решения задачи (IP) в виде

$$\theta(t) = \xi(t) + s(t)\tilde{f}$$
, где $\xi \in L^2(0,T;V_0) \cap C([0,T],H_0) \cap L^5(Q)$.

Сформулируем постановку задачи для определения функции §.

Задача (Р). Найти $\xi \in L^2(0,T;V_0) \cap C([0,T],H_0) \cap L^5(Q)$ такую, что $r\theta' \in L^2(0,T;V_0') + L^{5/4}(Q)$

$$r\theta' + A_1\theta + B(b[\theta]^4) - g = 0$$
 в V_0' п.в. на $(0, T), \quad \xi(0) = \xi_0,$ (9)

где $\theta(t) = \xi(t) + s(t)\tilde{f}, \xi_0 = \theta_0 - s(0)\tilde{f} \in H_0.$

Лемма 1. Пусть выполняются условия (i)—(iii), $\theta_0 - s(0)\tilde{f} \in H_0$. Тройка $\{q, \theta, \phi\}$ является решением обратной задачи (IP), если и только если

$$\theta(t) = \xi(t) + s(t)\tilde{f}, \quad \varphi = (A_2 + bI)^{-1}(g_b + b[\theta]^4), \quad q(t) = h'(t),$$

где ξ — решение задачи (P), $h(t)=(r(\theta(t)-\theta_0),\tilde{f})+\int_0^t (A_1\theta(\tau)+B(b[\theta(\tau)]^4)-g(\tau),\tilde{f})d\tau$.

Доказательство. Пусть $\{q,\theta,\phi\}$ — решение задачи (IP). Тогда, полагая $\xi(t)=\theta(t)-s(t)\tilde{f}$, заключаем, что $\xi\in L^2(0,T;V_0)\cap C([0,T],H_0)\cap L^5(Q)$. Из равенства (8) следует

$$(r\theta' + A_1\theta + B(b[\theta]^4) - g, v) = 0$$
 b $D'(0,T) \ \forall v \in V_0.$

Заметим, что $A_1\theta+B(b[\theta]^4)-g=A_1\theta+b([\theta]^4-\varphi)-f_b$ и при этом $A_1\theta-f_b\in L^2(0,T;V')\subset L^2(0,T;V'_0),$ $b[\theta]^4\in L^{5/4}(Q),$ $\varphi\in L^{5/4}(0,T;W)\subset L^{5/4}(Q).$ Поэтому $r\theta'\in L^2(0,T;V'_0)+L^{5/4}(Q)$ и справедливы равенства (9). Обратно, если ξ — решение задачи (P), то для $\theta(t)=\xi(t)+s(t)\hat{f}$ справедливы равенства $(f,\theta(t))=s(t),$ $t\in (0,T),$ $\theta(0)=\theta_0.$ Кроме того, из условия $\theta\in L^5(Q)$ получаем $\varphi=(A_2+bI)^{-1}(g_b+b[\theta]^4)\in L^{5/4}(0,T;W).$ Поскольку $v-(f,v)\hat{f}\in V_0$ для всех $v\in V$, из (9) следует, что

$$(r\theta' + A_1\theta + B(b[\theta]^4) - g, v - (f, v)\tilde{f}) = 0.$$
(10)

Для того чтобы ввести интенсивность тепловых источников, положим

$$\tilde{\Theta}(t) = \int\limits_0^t \Theta(au) d au, \quad F(t) = \int\limits_0^t (B(b[\Theta(au)]^4) - g(au)) d au.$$

Интегрируя (10), получим

$$(r(\theta(t) - \theta_0) + A_1\tilde{\theta}(t) + F(t), v - (f, v)\tilde{f}) = 0 \ \forall v \in V.$$

Последнее равенство можно переписать в виде

$$(r(\theta(t) - \theta_0) + A_1\tilde{\theta}(t) + F(t) - h(t)f, v) = 0 \ \forall v \in V,$$
(11)

где $h(t) = (r(\theta(t) - \theta_0), \tilde{f}) + \int_0^t (A_1\theta(\tau) + B(b[\theta(\tau)]^4) - g(\tau), \tilde{f})d\tau \in C[0, T]$. Дифференцируя (11) по t в смысле распределений на (0, T), получим первое уравнение в (6), где $q(t) = h'(t) \in H^{-1}(0, T)$.

3. ТЕОРЕМА СУЩЕСТВОВАНИЯ РЕШЕНИЯ ЗАДАЧИ (Р)

Для доказательства разрешимости задачи будем использовать следующие вспомогательные оценки, обоснование которых приводится в конце работы.

Лемма 2 (см. [7]). Пусть $\zeta \in W$,

$$E(\zeta) = \frac{16\sigma}{25} \sum_{j=0}^{p} \alpha_{j} n_{j}^{2} \|\nabla \xi\|_{j}^{2} + \sigma n_{0}^{2} \int_{\Gamma} \gamma \xi^{2} d\Gamma + \sigma n_{0}^{2} \sum_{j=1}^{p} h_{j} \int_{\Gamma_{j}} ([\zeta_{0}]^{8/5} - [\zeta_{j}]^{8/5}) ([\zeta_{0}]^{2/5} - [\zeta_{j}]^{2/5}) d\Gamma.$$

 ${\it Тогда}$ существует постоянная K>0 такая, что

$$K \|\xi\|^2 < E(\xi) \quad \forall \xi \in W.$$

Лемма 3. Пусть $u \in L^5(\Omega), \eta \in W$, $A_2\eta + b\eta = bu$. Тогда

$$\|\eta\|_{L^{5}(\Omega)} \le \frac{\max b}{K + \max b} \|u\|_{L^{5}(\Omega)}.$$
 (12)

3десь и далее используется весовая норма в $L^5(\Omega)$, $\|z\|_{L^5(\Omega)} = \left(\int_{\Omega} b|z|^5 dx\right)^{1/5}$.

Лемма 4. Пусть $B:W'\mapsto W'$, $B=A_2(A_2+bI)^{-1}$. Тогда для произвольных $u,v\in L^5(\Omega)$ справедливы неравенства

$$(B(b[u]^4), u) \ge K_1 \|u\|_{L^5(\Omega)}^5, \quad (B(b[u]^4), v) \le K_2 \|u\|_{L^5(\Omega)}^4 \|v\|_{L^5(\Omega)}. \tag{13}$$

Здесь $K_1 = \frac{K}{K + \max b}$, $K_2 = \frac{K + 2 \max b}{K + \max b}$.

Определим галеркинские приближения ξ_k решения задачи (P) и выведем необходимые для доказательства разрешимости априорные оценки. В пространстве V_0 рассмотрим ортонормированный в H базис w_1, w_2, \ldots Тогда

$$\xi_k(t) \in V_k = \text{span}\{w_1, w_2, ..., w_k\}, \quad t \in (0, T).$$

$$\left(r\theta'_k + A_1\theta_k + B(b[\theta_k]^4) - g, v\right) = 0 \quad \forall v \in V_k,$$

$$\xi_k(0) = \xi_{0k}.$$
(14)

Здесь $\theta_k(t)=\xi_k(t)+s(t) ilde{f}, \xi_{0k}$ — ортогональная проекция в H функции ξ_0 на подпространство V_k .

Задача Коши для системы нелинейных обыкновенных дифференциальных уравнений (14) разрешима на малом временном интервале $(0, T_k)$. Оценки, полученные ниже, позволяют продолжить решение на (0, T).

Априорные оценки галеркинских приближений

Положим $v = \xi_k$ в (14) и учтем следующие соотношения:

$$(r\theta'_k, \xi_k) = (r\xi'_k, \xi_k) + s'(t)(r\tilde{f}, \xi_k) = \frac{1}{2} \frac{d}{dt} (r\xi_k, \xi_k) + s'(t)(r\tilde{f}, \xi_k),$$

$$(A_1\theta_k, \xi_k) = \|\xi_k\|_V^2 + s(t)(A_1\tilde{f}, \xi_k),$$

$$(B(b[\theta_k]^4), \xi_k) = (B(b[\theta_k]^4), \theta_k) - s(t)(B(b[\theta_k]^4), \tilde{f}).$$

Тогда

$$\frac{1}{2}\frac{d}{dt}(r\xi_k, \xi_k) + \|\xi_k\|_V^2 + (B(b[\theta_k]^4), \theta_k) = s(t)(B(b[\theta_k]^4), \tilde{f}) + (p, \xi_k).$$

Здесь $p(t) = g(t) - s(t)A_1\tilde{f} - s'(t)r\tilde{f} \in L^2(0,T;V').$

Применяя оценки (13), получаем неравенство

$$\frac{1}{2}\frac{d}{dt}(r\xi_k, \xi_k) + \|\xi_k\|_V^2 + K_1\|\theta_k\|_{L^5(\Omega)}^5 \le K_2\|\theta_k\|_{L^5(\Omega)}^4 \|s(t)\tilde{f}\|_{L^5(\Omega)} + (p, \xi_k). \tag{15}$$

Оценим правую часть (15), используя неравенства

$$(p, \xi_k) \le \frac{1}{2} \|p\|_{V'}^2 + \frac{1}{2} \|\xi_k\|_V^2,$$

$$\|\theta_k\|_{L^5(\Omega)}^4 \|s(t)\tilde{f}\|_{L^5(\Omega)} \le \frac{1}{5} \left(4\varepsilon^{5/4} \|\theta_k\|_{L^5(\Omega)}^5 + \varepsilon^{-5} \|s(t)\tilde{f}\|_{L^5(\Omega)}^5 \right).$$

При достаточно малом $\varepsilon > 0$ из (15) следует оценка

$$\frac{d}{dt}(r\xi_k, \xi_k) + \|\xi_k\|_V^2 + K_1 \|\theta_k\|_{L^5(\Omega)}^5 \le C \|s(t)\tilde{f}\|_{L^5(\Omega)}^5 + \|p\|_{V'}^2. \tag{16}$$

Здесь и далее через C > 0 обозначаем постоянные, не зависящие от k.

Проинтегрировав по времени неравенство (16), получаем оценки

$$\|\xi_k(t)\| \le C, \quad \int_0^T \|\xi_k(\tau)\|_V^2 d\tau \le C, \quad \int_0^T \|\theta_k(\tau)\|_{L^5(\Omega)}^5 d\tau \le C.$$
 (17)

Аналогичные оценки в $L^\infty(0,T;H)$ и в $L^2(0,T;V)$ справедливы и для θ_k . Выведем равностепенную непрерывность последовательности θ_k в $L^2(0,T;H)$. Рассмотрим (14) в момент времени τ , положим $v=\theta_k(\tau)-\theta_k(t)\in V_k$ и проинтегрируем по τ от t до t+h, затем по t от 0 до T-h. Тогда

$$\frac{1}{2} \int_{0}^{T-h} (r(\theta_k(t+h) - \theta_k(t), \theta_k(t+h) - \theta_k(t)) dt = \int_{0}^{T-h} \int_{t}^{t+h} p_k(t, \tau) d\tau dt,$$
 (18)

где

$$p_k(t, \tau) = (A_1 \theta_k(\tau) + B(b([\theta_k(\tau)]^4) - g(\tau), \theta_k(t) - \theta(\tau)).$$

Заметим, что

$$(A_1 \theta_k(\tau), \theta_k(t) - \theta_k(\tau)) \leq \frac{1}{2} \|\theta_k(\tau)\|_V^2 + \frac{1}{2} \|\theta_k(t)\|_V^2,$$

$$(B(b[\theta_k(\tau)]^4), \theta_k(t) - \theta_k(s)) \leq K_2 \|\theta_k(\tau)\|_{L^5(\Omega)}^4 \|\theta_k(t) - \theta_k(\tau)\|_{L^5(\Omega)} \leq$$

$$\leq K_2 \left(\frac{9}{5} \|\theta_k(\tau)\|_{L^5(\Omega)}^5 + \frac{1}{5} \|\theta_k(t)\|_{L^5(\Omega)}^5\right).$$

Полученные неравенства позволяют оценить правую часть (18), используя также неравенства (17), причем для оценки интегралов от функций, зависящих от τ , достаточно поменять порядок интегрирования. В результате получаем оценку равностепенной непрерывности

$$\int_{0}^{T-h} \|\theta_{k}(t+h) - \theta_{k}(t)\|^{2} dt \le C_{1}h, \tag{19}$$

где $C_1 > 0$ не зависит от k, h.

Оценки (17), (19) позволяют утверждать, переходя при необходимости к подпоследовательностям, что существуют функции ξ , $\theta = \xi + s(t)\tilde{f}$ такие, что

 $\xi_k \to \xi$ слабо в $L^2(0,T;V_0), \theta_k \to \theta$ слабо в $L^2(0,T;V), L^5(Q),$ сильно в $L^2(0,T;H),$ сильно в $L^4(Q).$

Сходимость $\theta_k \to \theta$ в $L^4(Q)$ следует из неравенства

$$\|\theta_k - \theta\|_{L^4(Q)}^4 \le \|\theta_k - \theta\|_{L^2(Q)}^{2/3} \|\theta_k - \theta\|_{L^5(Q)}^{10/3}.$$

Заметим также, что последовательность $B(b([\theta_k]^4) = b([\theta_k]^4 - \psi_k)$, где $A_2\psi_k + b\psi_k = b[\theta_k]^4$, ограничена в $L^{5/4}(0,T;W)$ и поэтому $B(b([\theta_k]^4) \to \chi$ слабо в $L^{5/4}(0,T;W)$. Поскольку $\theta_k \to \theta$ в $L^4(Q)$, заключаем, что $\chi = B(b([\theta]^4)$.

Полученных результатов о сходимости достаточно для предельного перехода при $k \to \infty$ в системе (14) и доказательства того, что предельные функции таковы, что $\xi \in L^2(0,T;V_0) \cap L^5(Q)$, $r\xi' \in L^2(0,T;V_0') + L^{5/4}(Q)$ и выполняются равенства (9). При этом $\xi \in C([0,T];H)$ (см. [12]).

Таким образом, получаем следующий результат.

Теорема 1. Пусть выполняются условия (i)—(iii), $\theta_0 - s(0)\tilde{f} \in H_0$. Тогда существует решение задачи (P).

4. ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ ОБРАТНОЙ ЗАДАЧИ

Покажем, что задача (Р) не может иметь двух различных решений. Тогда, на основании леммы 1 и теоремы 1, получим однозначную разрешимость задачи (ІР).

Пусть $\xi_{1,2}$ — два решения задачи (P), $\theta_{1,2}=\xi_{1,2}+s(t)\tilde{f},$ $\theta=\xi_1-\xi_2=\theta_1-\theta_2\in L^2(0,T;V_0).$ Тогда из (9) следует равенство

$$(r\theta' + A_1\theta + B(b([\theta_1]^4 - [\theta_1]^4)), \theta) = (r\theta' + A_1\theta + (b([\theta_1]^4 - [\theta_1]^4), \theta) - (b\zeta, \theta) = 0.$$

Здесь $\zeta = (A_2 + bI)^{-1} (b([\theta_1]^4 - [\theta_1]^4).$

Учитывая неравенства

$$([\theta_1]^4 - [\theta_2]^4)(\theta_1 - \theta_2) \ge 0, \quad |[\theta_1]^4 - [\theta_2]^4| \le 2(|\theta_1|^3 + |\theta_2|^3)|\theta|,$$

получаем оценки

$$\frac{1}{2}\frac{d}{dt}(r\theta,\theta) + \|\theta\|_V^2 \le (b\zeta,\theta) \le \max b \|\zeta\|_{L^6(\Omega)} \|\theta\|_{L^{6/5}(\Omega)} \le \max b |\Omega|^{1/3} \|\zeta\|_{L^6(\Omega)} \|\theta\|, \tag{20}$$

при этом

$$(A_2\xi,\xi) + (b\xi,\xi) = (b([\theta_1]^4 - [\theta_1]^4),\xi) \le 2\max b \int_{\Omega} (|\theta_1|^3 + |\theta_2|^3)|\theta||\xi| dx.$$
 (21)

Левую часть (21) оценим снизу, используя непрерывность вложения $W \subset L^6(\Omega)$ и поэтому $K_3 \|\phi\|_{L^6(\Omega)}^2 \le (A_2 \xi, \xi) + (b \xi, \xi)$, а правую сверху, используя неравенство Гёльдера. Тогда

$$K_3 \|\xi\|_{L^6(\Omega)}^2 \leq 2 \max b \|\xi\|_{L^6(\Omega)} \left(\left(\int_{\Omega} |\theta_1|^{18/5} |\theta|^{6/5} dx \right)^{5/6} + \left(\int_{\Omega} |\theta_2|^{18/5} |\theta|^{6/5} dx \right)^{5/6} \right).$$

Заметим, что

$$\left(\int\limits_{\Omega} |\theta_{1,2}|^{18/5} |\theta|^{6/5} dx\right)^{5/6} \leq \|\theta_{1,2}\|_{L^{5}(\Omega)}^{3} \|\theta\|_{L^{6}(\Omega)}^{4/5} \|\theta\|^{1/5}.$$

Следовательно,

$$K_3 \| \xi \|_{L^6(\Omega)} \leq 2 \max b \left(\| \theta_1 \|_{L^5(\Omega)}^3 + \| \theta_2 \|_{L^5(\Omega)}^3 \right) \| \theta \|_{L^6(\Omega)}^{4/5} \| \theta \|^{1/5}.$$

Используя полученное неравенство для ζ в правой части (20), получаем

$$\frac{1}{2}\frac{d}{dt}(r\theta,\theta) + \|\theta\|_{V}^{2} \le K_{4}\left(\|\theta_{1}\|_{L^{5}(\Omega)}^{3} + \|\theta_{2}\|_{L^{5}(\Omega)}^{3}\right) \|\theta\|_{L^{6}(\Omega)}^{4/5} \|\theta\|^{6/5}. \tag{22}$$

Здесь $K_4 = 2(\max b)^2 |\Omega|^{1/3}/K_3$. Из неравенства Юнга с параметром $\epsilon > 0$ выводим оценку

$$\left(\|\theta_1\|_{L^5(\Omega)}^3+\|\theta_2\|_{L^5(\Omega)}^3\right)\|\theta\|_{L^6(\Omega)}^{4/5}\|\theta\|^{6/5}\leq \frac{4\epsilon^{5/2}}{5}\|\theta\|_{L^6(\Omega)}^2+\frac{3\epsilon^{-5/3}}{5}\left(\|\theta_1\|_{L^5(\Omega)}^5+\|\theta_2\|_{L^5(\Omega)}^5\right)\|\theta\|^2.$$

Учитывая непрерывность вложения $V \subset L^6(\Omega)$, получаем из (22) при малом ϵ

$$\min r \|\theta(t)\|^2 \leq K_5 \int_0^t \left(\|\theta_1(\tau)\|_{L^5(\Omega)}^5 + \|\theta_2(\tau)\|_{L^5(\Omega)}^5 \right) \|\theta(\tau)\|^2 d\tau,$$

где $K_5>0$ зависит только от K_4 , ϵ . Функция $\tau \to \left(\|\theta_1(\tau)\|_{L^5(\Omega)}^5+\|\theta_2(\tau)\|_{L^5(\Omega)}^5\right)$ интегрируема на (0,T) и поэтому из неравенства Гронуолла следует $\theta=0$, что означает единственность решения.

Теорема 2. Пусть выполняются условия (i)—(iii), $\theta_0 - s(0)\tilde{f} \in H_0$. Тогда существует единственное решение обратной задачи (IP).

5. ДОКАЗАТЕЛЬСТВО ВСПОМОГАТЕЛЬНЫХ УТВЕРЖДЕНИЙ

Лемма 5. Для вывода оценки (12) определим срезку функции η , полагая для $m \in \mathbb{N}$

$$\eta_m = egin{cases} \eta, & \textit{ecnu} \ |\eta| < m, \ m \ \mathrm{sign} \ \eta, & \textit{ecnu} \ |\eta| \geq m. \end{cases}$$

Умножим скалярно уравнение $A_2\eta + b\eta = bu$ на $[\eta_m]^4 \in W$. Тогда

$$(A_2\eta, [\eta_m]^4) + (b\eta, [\eta_m]^4) = (bu, [\eta_m]^4).$$
(23)

Пусть $\psi_m = [\eta_m]^{5/2}$. Выражение $(A_2\eta, [\eta_m]^4)$ оценивается снизу квадратичной формой $E(\psi_m)$, определенной в лемме 2, и в силу этой леммы

$$K \|\psi_m\|^2 \le E(\psi_m) \le (A_2 \eta, [\eta_m]^4).$$

Кроме того, справедливы неравенства

$$(b\psi_m, \psi_m) \le (b\eta, [\eta_m]^4), \quad (bu, [\eta_m]^4) \le ||u||_{L^5(\Omega)} ||\eta||_{L^5(\Omega)}^4.$$

Поэтому из равенства (23) следует оценка

$$K\|\psi_m\|^2 + (b\psi_m, \psi_m) \le \|u\|_{L^5(\Omega)} \|\eta\|_{L^5(\Omega)}^4.$$

Это означает, что последовательность ψ_m ограничена в пространстве H, а тогда и в W. Следовательно, при $m \to +\infty$ имеет место сходимость $\psi_m \to \psi = [\eta]^{5/2}$ в H. Из последнего неравенства выводим в пределе:

$$K\|\psi\|^2 + (b\psi, \psi) \le \|u\|_{L^5(\Omega)} \|\eta\|_{L^5(\Omega)}^4.$$

Заметив, что $\max b\|\psi\|^2 \geq \|\eta\|_{L^5(\Omega)}^5, (b\psi,\psi) = \|\eta\|_{L^5(\Omega)}^5,$ получаем неравенство

$$\|\eta\|_{L^5(\Omega)} \leq \frac{\max b}{K + \max b} \|u\|_{L^5(\Omega)}.$$

Лемма 6. Справедливость оценок (13) следует из леммы 3, если учесть, что

$$(B(b[u]^{4}), u) = (b[u]^{4}, u) - (b(A_{2} + bI)^{-1}(b[u]^{4}), u) = ||u||_{L^{5}(\Omega)} - (b[u]^{4}, (A_{2} + bI)^{-1}(bu)) \ge$$

$$\ge ||u||_{L^{5}(\Omega)}^{5} - ||u||_{L^{5}(\Omega)}^{4} ||(A_{2} + bI)^{-1}(bu)||_{L^{5}(\Omega)} \ge \left(1 - \frac{\max b}{K + \max b}\right) ||u||_{L^{5}(\Omega)}^{5}.$$

Далее,

$$(B(b[u]^4), v) = (b[u]^4, v) - (b(A_2 + bI)^{-1}(b[u]^4), v) \le$$

$$\le ||u||_{L^5(\Omega)}^4 ||v||_{L^5(\Omega)} - (b[u]^4, (A_2 + bI)^{-1}(bv)) \le \left(1 + \frac{\max b}{K + \max b}\right) ||u||_{L^5(\Omega)}^4 ||v||_{L^5(\Omega)}.$$

СПИСОК ЛИТЕРАТУРЫ

- Pinnau R. Analysis of optimal boundary control for radiative heat transfer modeled by SP₁-system // Commun. Math. Sci. 2007. V. 5. № 4. P. 951–969.
- 2. *Ковтанюк А.Е., Гренкин Г.В., Чеботарев А.Ю.* Использование диффузионного приближения для моделирования радиационных и тепловых процессов в кожном покрове // Оптика и спектроскопия. 2017. Т. 123. N 2. C. 194—199.
- 3. *Kovtanyuk A., Chebotarev A., Astrakhantseva A.* Inverse extremum problem for a model of endovenous laser ablation // J. of Inverse and Ill-Posed Problems. 2021. V. 29 (3). P. 467–476.
- 4. *Чеботарев А.Ю., Пак Н.М., Ковтанюк А.Е.* Анализ и численное моделирование начально-краевой задачи для квазилинейных уравнений сложного теплообмена // Сиб. журнал индустриальной матем. 2023. Т. 26. № 4. С. 180—193.
- 5. *Chebotarev, A.Y., Grenkin, G.V., Kovtanyuk, A.E., Botkin, N.D., Hoffmann, K.-H.* Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions// Communications in Nonlinear Science and Numerical Simulation. 57 (2018). 290–298.
- 6. *Chebotarev A. Y., Kovtanyuk A.E.* Quasi-static diffusion model of complex heat transfer with reflection and refraction conditions // J. Math. Anal. Appl. 2022. V. 507. 125745.
- 7. *Чеботарев А.Ю*. Неоднородная краевая задача для уравнений сложного теплообмена с френелевскими условиями сопряжения // Дифференц. ур-ния. 2020. Т. 56. № 12. С. 1660—1665.
- 8. *Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Hoffmann K.-H.* Unique solvability of a steady-state complex heat transfer model // Commun. Nonlinear Sci. Numer. Simul. 2015. V. 20. № 3. P. 776–784.
- 9. *Chebotarev A. Yu., Kovtanyuk A.E., Botkin N.D.* Problem of radiation heat exchange with boundary conditions of the Cauchy type // Communications in Nonlinear Science and Numerical Simulation. 2019. V. 75. P. 262–269.
- 10. *Chebotarev A. Yu.*, *Pinnau R*. An inverse problem for a quasi-static approximate model of radiative heat transfer // J. Math. Anal. Appl. 2019. V. 472. № 1. P. 314–327.
- 11. *Чеботарев А.Ю.* Обратная задача для уравнений сложного теплообмена с френелевскими условиями сопряжения // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 2. С. 303—311.
- 12. Чеботарев А.Ю. Неоднородная задача для квазистационарных уравнений сложного теплообмена с условиями отражения и преломления // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 3. С. 118—126.

- 13. *Амосов А.А.* Стационарная задача сложного теплообмена в системе полупрозрачных тел с краевыми условиями диффузного отражения и преломления излучения // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 3. С. 510—535.
- 14. *Amosov A.A.* Nonstationary problem of complex heat transfer in a system of semitransparent bodies with boundary-value conditions of diffuse reflection and refraction of radiation // J. Math. Sci. 2018. V. 233. № 6. P. 777–806.
- 15. *Amosov A.A.*, *Krymov N.E.* On a Nonstandard Boundary Value Problem Arising in Homogenization of Complex Heat Transfer Problems // J. of Math. Sc. 2020. V. 244. P. 357–377.
- 16. *Amosov A*. Unique solvability of a stationary radiative-conductive heat transfer problem in a system consisting of an absolutely black body and several semitransparent bodies // Math. Methods in the Applied Sciences. 2021. V. 44. № 13. P. 10703−10733.
- 17. *A. Amosov*. Nonstationary Radiative-Conductive Heat Transfer Problem in a Semitransparent Body with Absolutely Black Inclusions // Mathematics 2021. 9(13). 1471.
- 18. *Amosov A*. Nonstationary radiative-conductive heat transfer problem in an absolutely black body with semitransparent inclusions // Math. Methods in the Applied Sciences. 2023. V. 46. № 4. P. 4237–4262.
- 19. Пятков С.Г., Ротко В.В. Обратные задачи для некоторых квазилинейных параболических систем с точечными условиями переопределения // Матем. тр., 22:1 (2019), 178—204.
- 20. *Белоногов В.А.*, *Пятков С.Г.* О некоторых классах обратных задач определения коэффициента теплообмена в слоистых средах // Сиб. матем. журнал. 2022. Т.63. № 2. С. 252—271.
- 21. Пятков С.Г., Баранчук В. А. Определение коэффициента теплопередачи в математических моделях тепломассопереноса // Матем. заметки. 2023. Т. 113. Выпуск 1. С. 90–108.
- 22. *Kovtanyuk A.E., Botkin N.D., Hoffmann K.-H.* Numerical simulations of a coupled radiative-conductive heat transfer model using a modified Monte Carlo method // Internat. Journal of Heat and Mass Transfer. 2012. V. 55. P. 649–654.

THE INVERSE PROBLEM FOR QUASI-STATIONARY EQUATIONS OF COMPLEX HEAT TRANSFER WITH FRESNEL CONJUGATION CONDITIONS

A.Y. Chebotarev*

690041 Vladivostok, Radio Str., 7, IAM FEB RAS, Russia *e-mail: cheb@iam.dvo.ru

Received: 21.02.2024 Revised: 19.04.2024 Accepted: 28.06.2024

Abstract. A nonstationary inverse problem is considered for a nonlinear parabolic elliptic system modeling complex heat transfer with Fresnel conjugation conditions on the surfaces of the refractive index discontinuity. The time-non-local unambiguous solvability of the inverse problem is proved.

Keywords: quasi-stationary equations of radiative heat transfer, Fresnel conjugation conditions, inverse problem, nonlocal solvability.