Calculation and Simulation of Flowsheets for Processing Flue Gases from Thermal Power Plants to Methanol

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Several flowsheets for processing flue gases from thermal power plants to commercial-quality methanol, differing in the steps of producing the feedstock for the methanol synthesis, were considered. The dependence of the methanol yield, energy efficiency, and carbon footprint of the technology as a whole (from the step of СО2 capture from flue gases to the step of methanol extraction) on the composition of flue gases (СО2 concentration) and temperature of their flow was studied. The option of processing flue gases with high initial flow temperature using the flowsheet involving high-temperature steps of СО2 separation and electrolysis was considered. Taking into account the recovery of the heat from flows and steam generation, this flowsheet has high efficiency.

Sobre autores

E. Galanova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

M. Magomedova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

K. Chistyakov

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
620137, Yekaterinburg, Russia

M. Afokin

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

S. Bazhenov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

Bibliografia

  1. Gentile G., Bonalumi D., Pieterse J. A. Z., Sebastiani F., Lucking L., Manzolini G. Techno-economic assessment of the FReSMe technology for CO2 emissions mitigation and methanol production from steel plants //j. CO2 Util. 2022. V. 56. P. 101852. https://doi.org/10.1016/j.jcou.2021.101852
  2. Беликов С. Е., Котлер В. Р. // Котлы тепловых электростанций и защита атмосферы. М.: Аква-Терм, 2008. C. 25-210.
  3. Зверева Э. Р., Фарахов Т. М. // Энергоресурсосберегающие технологии и аппараты ТЭС при работе на мазутах / Под ред. А. Г. Лаптева. М.: Теплотехник, 2012. C. 37-50.
  4. Грибков А. М. Выбор оптимальных размеров дымовых труб и внешних газоходов: учеб. пособие. Казань: Казан. гос. энерг. ун-т, 2016. 83 с.
  5. Аксютин О. Е., Ишков А. Г., Хворов Г. А., Юмашев М. В., Юров Е. В., Мохов В. П., Мохов О. В. Повышение энергетической эффективности магистрального транспорта газа ПАО "Газпром" на основе реализации высокоэффективных технологий утилизации тепловой энергии выхлопных газов газотурбинных установок газоперекачивающих агрегатов // Газ. пром-сть. 2017. № S1 (750). С. 64-69. EDN: YTKZPB
  6. Joo O.-S., Jung K.-D., Moon I., Rozovskii A. Y., Lin G. I., Han S.-H., Uhm S.-J. Carbon dioxide hydrogenation to form methanol via a Reverse-Water-Gas-Shift Reaction (the CAMERE Process) // Ind. Eng. Chem. Res. 1999. V. 38. P. 1808-1812. https://doi.org/10.1021/ie9806848
  7. Joo O.-S., Jung K.-D., Jung Y. CAMERE Process for methanol synthesis from CO2 hydrogenation // Stud. Surf. Sci. Catal. 2004. V. 153. P. 67-72. https://doi.org/10.1016/S0167-2991(04)80221-0
  8. Dunstan M. T., Donat F., Bork A. H., Grey C. P., Müller C. R. CO2 capture at medium to high temperature using solid oxide-based sorbents: Fundamental aspects, mechanistic insights, and recent advances // Chem. Rev. 2021. V. 121. N 20. P. 1268-12745. https://doi.org/10.1021/acs.chemrev.1c00100
  9. Sebbahi S., Nabil N., Alaoui-Belghiti A., Laasri S., Rachidi S., Hajjaji A. Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis // Mater. Today: Proc. 2022. V. 66. N 1. P. 140-145. https://doi.org/10.1016/j.matpr.2022.04.264
  10. Buttler A., Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A Review // Renewable Sustainable Energy Rev. 2018. V. 82. P. 2440-2454. https://doi.org/10.1016/j.rser.2017.09.003
  11. Stoots C. M., OʹBrien J. E., Condie K. G., Hartvigsen J. J. High-temperature electrolysis for large-scale hydrogen production from nuclear energy-Experimental investigations // Int. J. Hydrogen Energy. 2010. V. 35. P. 4861-4870. https://doi.org/10.1016/j.ijhydene.2009.10.045
  12. Zhang W., Zheng Y., Yu B., Wang J., Chen J. Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell // Int. J. Hydrogen Energy. 2017. V. 42. P. 29911-29920. https://doi.org/10.1016/j.ijhydene.2017.06.225
  13. Parigi D., Giglio E., Soto A., Santarelli M. Power-to-fuels through carbon dioxide Re-Utilization and hightemperature electrolysis: A Technical and economical comparison between synthetic methanol and methane //j. Cleaner Prod. 2019. V. 226. P. 679-691. https://doi.org/10.1016/j.jclepro.2019.04.087

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies