Reductive Treatment of δ-MnO2 with Sodium Borohydride: Method for Increasing the Electrode Material Capacitance

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of reductive treatment on the phase composition, morphology, and electrochemical parameters of δ-MnO2 produced by the hydrothermal method from KMnO4 at a temperature of 160°C in the presence of HNO3 was studied. δ-MnO2 processing with 3 M NaBH4 aqueous solution leads to partial reduction of Mn(IV) to Mn(III) and Mn(II). The electrochemical characteristics of the obtained electrode materials were examined by cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. Reductive treatment increases the specific capacitance of δ-MnO2 in 1 M Na2SO4 up to 204 F g–1 at a current density of 0.1 A g–1, and also reduces diffusion limitations during cycling due to an increase in the specific surface area. The loss of specific capacitance after 2000 charge–discharge cycles does not exceed 2.6%, which confirms the high electrochemical stability of the obtained electrode materials.

Sobre autores

E. Arkhipova

Moscow State University, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

A. Ivanov

Moscow State University, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

S. Nikolenko

Moscow State University, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

K. Maslakov

Moscow State University, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

S. Savilov

Moscow State University, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

S. Aldoshin

Moscow State University, 119991, Moscow, Russia

Autor responsável pela correspondência
Email: acjournal.nauka.nw@yandex.ru

Bibliografia

  1. Frackowiak E., Abbas Q., Béguin F. Carbon/carbon supercapacitors //j. Energy Chem. 2013. V. 22. N 2. P. 226-240. https://doi.org/10.1016/S2095-4956(13)60028-5
  2. Чернявина В. В., Бережная А. Г., Лепёшкин И. О., Дышловая Я. А. Композитные электроды С/MnO2 для электрохимических конденсаторов на водном электролите // Электрохим. энергетика. 2021. Т. 21. № 3. С. 156-163. https://doi.org/10.18500/1608-4039- 2021-21-3-156-163
  3. Huang M., Li F., Dong F., Zhang Y. X., Zhang L. L. MnO2-based nanostructures for high-performance supercapacitors //j. Mater. Chem. A. 2015. V. 3. P. 21380-21423. https://doi.org/10.1039/c5ta05523g
  4. Yin B., Zhang S., Jiang H., Qu F., Wu X. Phase- controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage //j. Mater. Chem. A. 2015. V. 3. P. 5722-5729. https://doi.org/10.1039/C4TA06943A
  5. Wang J. G., Yang Y., Huang Z. H., Kang F. Coaxial carbon nanofibers/MnO 2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors // Electrochim. Acta. 2011. V. 56. N 25. P. 9240-9247. https://doi.org/10.1016/j.electacta.2011.07.140
  6. Wu M. S. Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition // Appl. Phys. Lett. 2005. V. 87. N 15. P. 1-3. https://doi.org/10.1063/1.2089169
  7. Arkhipova E. A., Ivanov A. S., Isaikina O. Ya., Novotortsev R. Yu., Stolbov D. N., Xia H., Savilov S. V. Application of MnO2/MWCNT composite in supercapacitors // Mater. Today Proc. 2022. V. 60. P. 1008-1011. https://doi.org/10.1016/j.matpr.2021.12.408
  8. Zhai T., Xie S., Yu M., Fang P., Liang C., Lu X., Tong Y. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors // Nano Energy. 2014. V. 8. P. 255- 263. https://doi.org/10.1016/j.nanoen.2014.06.013
  9. Kumar J., Jung H. J., Neiber R. R., Soomro R. A., Kwon Y. J., Hassan N. U., Shon M., Lee J. H., Baek K., Cho K. Y. Recent advances in oxygen deficient metal oxides: Opportunities as supercapacitor electrodes // Int. J. Energy Res. 2022. V. 46. N 6. P. 1-27. https://doi.org/10.1002/er.7675
  10. Sun Y., Huang N., Sun X., Wang D., Zhang J., Qiao S., Gao Z. An improvement on capacitive properties of clew-like MnO2 by thermal treatment under nitrogen // Int. J. Hydrogen Energy. 2017. V. 42. N 31. P. 20016- 20025. https://doi.org/10.1016/j.ijhydene.2017.05.234
  11. Wang X., Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods // Chem. Eur. J. 2003. V. 9. N 1. P. 300-306. https://doi.org/10.1002/chem.200390024
  12. Stranick M. A. MnO2 by XPS // Surf. Sci. Spectra. 1999. V. 6. N 1. P. 31-38. https://doi.org/10.1116/1.1247888
  13. Stranick M. A. Mn2O3 by XPS // Surf. Sci. Spectra. 1999. V. 6. N 1. P. 47-54. https://doi.org/10.1116/1.1247889
  14. Soares E. A., Paniago R., Carvalho V. E, Lopes E. L., Abreu G. J. P., Pfannes H. D. Quantitative low-energy electron diffraction analysis of MnO(100) films grown on Ag(100) // Phys. Rev. B. 2006. V. 73. N 3. ID 035419. https://doi.org/10.1103/PhysRevB.73.035419
  15. Beyreuther E., Grafström S., Eng L. M., Thiele C., Dörr K. XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content // Phys. Rev. B. 2006. V. 73. N 15. ID 155425. https://doi.org/10.1103/PhysRevB.73.155425
  16. Langell M. A., Hutchings C. W., Carson G. A., Nassir M. H. High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100) //j. Vac. Sci. Technol. 1996. V. 14. N 3. P. 1656-1661. https://doi.org/10.1116/1.580314
  17. Benhaddad L., Makhloufi L., Messaoudi B., Rahmouni K., Takenouti H. Reactivity of nanostructured MnO2 in alkaline medium studied with a microcavity electrode: Effect of oxidizing agent //j. Mater. Sci. Technol. 2011. V. 27. N 7. P. 585-593. https://doi.org/10.1016/S1005-0302(11)60112-6
  18. Xiong T., Lee W. S. V., Huang X., Xue J. M. Mn3O4/ reduced graphene oxide based supercapacitor with ultra-long cycling performance //j. Mater. Chem. A. 2017. V. 5. P. 12762-12768. https://doi.org/10.1039/c7ta03319b
  19. Jia J., Lian X., Wu M., Zheng F., Gao Y., Niu H. Self- assembly of α-MnO2/Mn3O4 hierarchical structure on carbon cloth for asymmetric supercapacitors //j. Mater. Sci. 2021. V. 56. P. 3246-3255. https://doi.org/10.1007/s10853-020-05475-9
  20. Gong Y., Li D., Fu Q., Pan C. Influence of graphene microstructures on electrochemical performance for supercapacitors //Prog. Nat. Sci. 2015. V. 25. N 5. P. 379-385. https://doi.org/10.1016/j.pnsc.2015.10.004

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies