Получение дисперсий графена в растворах неионогенных поверхностно-активных веществ для модифицирования полимерных гелей
- Authors: Gataullin A.R.1, Abramov V.A.1,2, Bogdanova S.A.1
-
Affiliations:
- Kazan National Research Technological University
- Kazan Institute of Biochemistry and Biophysics, FRC KazNTS RAS
- Issue: Vol 98, No 9-10 (2025)
- Pages: 510-522
- Section: Compositional Materials
- URL: https://journals.rcsi.science/0044-4618/article/view/352880
- DOI: https://doi.org/10.31857/S0044461825080046
- ID: 352880
Cite item
Abstract
About the authors
A. R. Gataullin
Kazan National Research Technological University
Email: zulfat.azari@yandex.ru
420015, Kazan, Karl Marx St., 68
V. A. Abramov
Kazan National Research Technological University; Kazan Institute of Biochemistry and Biophysics, FRC KazNTS RAS420015, Kazan, Karl Marx St., 68; 420111, Kazan, Lobachevsky St., 2/31
S. A. Bogdanova
Kazan National Research Technological University420015, Kazan, Karl Marx St., 68
References
- Sharma S. S. A., Bashir S., Kasi R., Subramaniam R. T. The significance of graphene based composite hydrogels as smart materials: A review on the fabrication, properties, and its applications // FlatChem. 2022. V. 33. ID 100352. https://doi.org/10.1016/j.flatc.2022.100352
- Croitoru A.-M., Ficai D., Ficai A. Novel photothermal graphene-based hydrogels in biomedical applications // Polymers. 2024. V. 16. N 8. ID 1098. https://doi.org/10.3390/polym16081098
- Zhang S., Zhao B., Zhang D., Yang M., Huang X., Han L., Chen K., Li X., Pang R., Shang Y., Cao A. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications // Particuology. 2023. V. 83. P. 212–231. https://doi.org/10.1016/j.partic.2023.06.002
- Kougkolos G., Golzio M., Laudebat L., Valdez-Nava Z., Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications // J. Mater. Chem. B. 2023. V. 11. ID 2036. https://doi.org/10.1039/d2tb02019j
- Hussain S., Maktedar S. S. Structural, functional and mechanical performance of advanced graphene-based composite hydrogels // Results in Chemistry. 2023. V. 6. ID 101029. https://doi.org/10.1016/j.rechem.2023.101029
- Ni F., Chen Y., Wang Z., Zhang X., Gao F., Shao Z., Wang H. Graphene derivative based hydrogels in biomedical applications // J. Tissue Eng. 2024. V. 15. P. 1–54. https://doi.org/10.1177/20417314241282131
- Lalire T., Longuet C., Taguet A. Electrical properties of graphene / multiphase polymer nanocomposites: A review // Carbon. 2024. V. 225. ID 119055. https://doi.org/10.1016/j.carbon.2024.119055
- Saharan R., Paliwal S. K., Tiwari A., Babu M. A., Tiwari V., Singh R., Beniwal S. K., Kumar M., Sharma A., Almalki W. H., Kazmi I., Alzarea S. I., Kukreti N., Gupta G. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery // J. Drug Delivery Sci. Technol. 2024. V. 94. ID 105506. https://doi.org/10.1016/j.jddst.2024.105506
- Ganguly S., Das P., Maity P. P., Mondal S., Ghosh S., Dhara S., Das N. C. Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: Rheological, physicomechanical, and electrical evaluations // J. Phys. Chem. B. 2018. V. 122. N 29. P. 7201–7218. https://doi.org/10.1021/acs.jpcb.8b02919
- Ganguly S., Ray D., Das P., Maity P. P., Mondal S., Aswal V. K., Dhara S., Das N. C. Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release // Ultrasonics Sonochem. 2018. V. 42. P. 212–227. https://doi.org/10.1016/j.ultsonch.2017.11.028
- Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications // Acta Biomaterialia. 2013. V. 9. N 12. P. 9243–9257. https://doi.org/10.1016/j.actbio.2013.08.016
- Servant A., Leon V., Jasim D., Methven L., Limousin P., Fernandez-Pacheco E. V., Prato M., Kostarelos K. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery // Advanced Healthcare Mater. 2014. V. 3. N 8. P. 1334–1343. https://doi.org/10.1002/adhm.201400016
- Weaver C. L., LaRosa J. M., Luo X., Cui X. T. Electrically controlled drug delivery from graphene oxide nanocomposite films // ACS Nano. 2014. V. 8. N 2. P. 1834–1843. https://doi.org/10.1021/nn406223e
- Sahoo D., Mitra T., Chakraborty K., Sarkar P. Remotely controlled electro-responsive on-demand nanotherapy based on amine-modified graphene oxide for synergistic dual drug delivery // Mater. Today Chem. 2022. V. 25. ID 100987. https://doi.org/10.1016/j,mtchem.2022.100987
- Du P., Yan J., Long S., Xiong H., Wen N., Cai S., Wang Y., Peng D., Liu Z., Liu Y. Tumor microenvironment and NIR laser dual-responsive release of berberine 9-O-pyrazole alkyl derivative loaded in graphene oxide nanosheets for chemo-photothermal synergetic cancer therapy // J. Mater. Chem. B. 2020. V. 8. N 18. P. 4046–4055. https://doi.org/10.1039/d0tb00489h
- Arnold A. M., Singh J., Sydlik S. A. The role and future of functional graphenic materials in biomedical and human health applications // Biomacromolecules. 2025. V. 26. N 4. P. 2015–2042. https://doi.org/10.1021/acs.biomac.4c01431
- Lazar A.-I., Aghasoleimani K., Semertsidou A., Vyas J., Rosca A.-L., Ficai D., Ficai A. Graphene-related nanomaterials for biomedical applications // Nanomaterials. 2023. V. 13. N 6. ID 1092. https://doi.org/10.3390/nano13061092
- Zare I., Mirshafiei M., Kheilnezhad B., Far B. F., Hassanpour M., Pishbin E., Vaghefi S. S. E., Yazdian F., Rashedi H., Hasan A., Wang X., Adeli M., Makvandi P. Hydrogel-integrated graphene superstructures for tissue engineering: From periodontal to neural regeneration // Carbon. 2024. V. 223. ID 118970. https://doi.org/10.1016/j.carbon.2024.118970
- Saharan R., Paliwal S. K., Tiwari A., Babu M. A., Tiwari V., Singh R., Beniwal S. K., Kumar M., Sharma A., Almalki W. H., Kazmi I., Alzarea S. I., Kukreti N., Gupta G. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery // J. Drug Delivery Sci. Technol. 2024. V. 94. ID 105506. https://doi.org/10.1016/j.jddst.2024.105506
- Khakpour E., Salehi S., Naghib S. M., Ghorbanzadeh S., Zhang W. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules // Frontiers Bioeng. Biotechnol. 2023. V. 11. ID 1129768. https://doi.org/10.3389/fbioe.2023.1129768
- Dalla Colletta A., Pelin M., Sosa S., Fusco L., Prato M., Tubaro A. Carbon-based nanomaterials and skin: An overview // Carbon. 2022. V. 196. P. 683–698. https://doi.org/10.1016/j.carbon.2022.05.0366
- Williams A.G., Moore E., Thomas A. Graphene-based materials in dental applications: Antibacterial, biocompatible, and bone regenerative properties // Int. J. Biomater. 2023. V. 2023. ID 8803283. https://doi.org/10.1155/2023/8803283
- Bisht, A., Zuniga-Bustos M., Prasher G., Gautam S., Poblete H., Singh R. P. Stabilization of carbon nanotubes and graphene by Tween-80: Mechanistic insights from spectroscopic and simulation studies // Langmuir. 2022. V. 38. N 33. P. 10173–10182. https://doi.org/10.1021/acs.langmuir.2c01190
- Abreu B., Montero J., Buzaglo M., Regev O., Marques E. F. Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets // J. Mol. Liq. 2021. V. 333. ID 116002. https://doi.org/10.1016/j.molliq.2021.116002
- Задымова Н. М. Коллоидно-химические аспекты трансдермальной доставки лекарств (обзор) // Коллоид. журн. 2013. Т. 75. № 5. С. 543–556. https://doi.org/10.7868/S0023291213050194 https://www.elibrary.ru/pguymz [Zadymova N. M. Colloidochemical aspects of transdermal drug delivery (review) // Colloid J. 2013. V. 75. N 5. P. 491–503. https://doi.org/10.1134/S1061933X13050189].
- Гатауллин А. Р., Богданова С. А., Рахматуллина А. П., Галяметдинов Ю. Г. Диспергирование углеродных нанотрубок в растворах оксиэтилированных изононилфенолов // ЖПХ. 2017. Т. 90. № 11. С. 1489–1497. https://www.elibrary.ru/zwfinl [Gataullin A. R., Bogdanova S. A., Rakhmatullina A. P., Galyametdinov Yu. G. Dispersion of carbon nanotubes in solutions of oxyethylated isononylphenols // Russ. J. Appl. Chem. 2017. V. 90. N 11. P. 1795–1803. https://doi.org/10.1134/S1070427217110118].
- Гатауллин А. Р., Абрамов В. А., Богданова С. А., Сальников В. В., Зуев Ю. Ф., Галяметдинов Ю. Г. Получение дисперсий углеродных нанотрубок в растворах оксиэтилированных жирных спиртов для модифицирования гелевых систем // Коллоид.журн. 2024. Т. 86. № 4. С. 422–435. https://doi.org/10.31857/S0023291224040022 https://www.elibrary.ru/carvxu [Gataullin A. R., Abramov V. A., Bogdanova S. A., Salnikov V. V., Zuev Yu. F., Galyametdinov Yu. G. Dispersion in solutions of ethoxylated fatty alcohols for modifying gel systems // Colloid J. 2024. V. 86. N 3. P. 358–369. https://doi.org/10.1134/S1061933X24600155].
- Ramadon D., McCrudden M. T. C., Courtenay A. J., Donnelly R. F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications // Drug Delivery and Translational Research. 2022. V. 12. P. 758–791. https://doi.org/10.1007/s13346-021-00909-6
- Bide Y., Fashapoyeh M.A., Shokrollahzadeh S. Structural investigation and application of Tween-80 — choline chloride self-assemblies as osmotic agent for water desalination // Sci. Rep. 2021. V. 11. ID 17068. https://doi.org/10.1038/s41598-021-96199-6
- Erawati T., Isadiartuti D., Anggalih B. D. The effect of polysorbate 20 and polysorbate 80 on the solubility of quercetin // J. Public Health Afr. 2023. V. 14. N 1. ID 2503. https://doi.org/10.4081/jphia.2023.2503
- Almeida M., Magalhaes M., Veiga F., Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic application in cancer // J. Polym. Res. 2018. V. 25. ID 31. https://doi.org/10.1007/s10965-017-1426-x
- Himiniuc L. M., Socolov R., Nica I., Agop M., Volovat C., Ochiuz L., Vasincu D., Rotundu A. M., Rosu I. A., Ghizdovat V., Volovat S. R. Theoretical and experimental aspects of sodium diclofenac salt release from chitosan-based hydrogels and possible applications // Gels. 2023. V. 9. N 5. ID 422. https://doi.org/10.3390/gels9050422
- Mast M.-P., Modh H., Knoll J., Fecioru E., Wacker M. G. An update to dialysis-based drug release testing — data analysis and validation using the pharma test dispersion releaser // Pharmaceutics. 2007. V. 13. N 12. ID 2007. https://doi.org/10.3390/pharmaceutics13122007
- Amaro-Gahete J., Benitez A., Otero R., Esquivel D., Jimenez-Sanchidrian C., Morales J., Caballero A., Romero-Salguero F. J. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method // Nanomaterials. 2019. V. 9. N 2. ID 152. https://doi.org/10.3390/nano9020152
- Milanovic M., Cirin D., Krstonosic V. The interactions in ternary system made of xanthan gum, Carbopol 940 and anionic/nonionic surfactant // J. Mol. Liq. 2021. V. 344. ID 117696. https://doi.org/10.1016/j.molliq.2021.117696
- Vishnyakov A., Mao R., Kam K., Potanin A., Neimark A. V. Interactions of crosslinked polyacrylic acid polyelectrolyte gels with nonionic and ionic surfactants // J. Phys. Chem. B. 2021. V. 125. N 50. P. 13817–13828. https://doi.org/10.1021/acs.jpcb.1c08638
Supplementary files


