Use of SiO2 Nanoparticles Modified with Polyethylene Glycol to Increase the Hydrophilicity of Epoxy Coatings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

SiO2 nanoparticles were modified with polyethylene glycol with a molecular weight of 2000, 6000, and 10000 g mol–1. For modification, the method based on the sequential interaction of polyethylene glycol with 3-(triethoxysilyl)propyl isocyanate with further treatment of the reaction product with nanodispersed SiO2 was used. The resulting product was characterized by IR spectroscopy, thermal analysis, and scanning electron microscopy. Modified nanodispersed SiO2 was introduced into epoxy resin in order to obtain coatings characterized by increased hydrophilicity. To improve the physical and mechanical characteristics, fillers were introduced into the composition of the coating with 30 wt % modified SiO2 nanoparticles: mica-muscovite and TiO2. It was shown that the process of biological fouling of epoxy coatings in the South China Sea proceeds more slowly in the case of a composition containing SiO2 nanoparticles modified with polyethylene glycol 6000.

About the authors

E. N. Evdokimova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; St. Petersburg State Institute of Technology (Technical University)

Email: acjournal.nauka.nw@yandex.ru
199034, St. Petersburg, Russia; 190013, St. Petersburg, Russia

Yu. A. Kondratenko

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
199034, St. Petersburg, Russia

V. L. Ugolkov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
199034, St. Petersburg, Russia

T. A. Kochina

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
199034, St. Petersburg, Russia

References

  1. 31857/S0044461823030076
  2. Lin B., Zhou S. Poly(ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings // Prog. Org. Coat. 2017. V. 106. P. 145-154. http://dx.doi.org/10.1016/j.porgcoat.2017.02.008
  3. Thompson C. S., Fleming R. A., Zou M. Transparent self-cleaning and antifogging silica nanoparticle films // Sol. Energy Mater. Sol. Cells. 2013. V. 115. P. 108-113. https://doi.org/10.1016/j.solmat.2013.03.030
  4. Patel P., Choi C. K., Meng D. D. Superhydrophilic surfaces for antifoqging and antifouling microfluidic devices // JALA-J. Assoc. Lab Aut. 2010. V. 15. N 2. P. 114-119. https://doi.org/10.1016/j.jala.2009.10.012
  5. Jiménez-Pardo I., Van der Ven L. G. J., Van Benthem R. A. T. M., De With G., Esteves A. C. C. Hydrophilic self-replenishing coatings with long-term water stability for anti-fouling applications // Coatings. 2018. V. 8. ID 184. https://doi.org/10.3390/coatings8050184
  6. Wang X. T., Deng X., Zhang T. D., Zhang J., Chen L. L., Wang Y. F., Cao X., Zhang Y. Z., Zheng X., Yin D. C. A versatile hydrophilic and antifouling coating based on dopamine modified four-arm polyethylene glycol by one-step synthesis method // ACS Macro Lett. 2022. V. 11. P. 805-812. https://doi.org/10.1021/acsmacrolett.2c00277
  7. Tsougeni K., Papageorgiou D., Tserepi A., Gogolides E. "Smart" polymeric microfluidics fabricated by plasma processing: Сontrolled wetting, capillary filling and hydrophobic valving // Lab Chip. 2010. V. 10. N 4. P. 462-469. https://doi.org/10.1039/B916566E
  8. Кочина Т. А., Кондратенко Ю. А., Шилова О. А., Власов Д. Ю. Биокоррозия, биообрастание и современные методы борьбы с ними // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 1. С. 86-112. https://doi.org/10.31857/S0044185622010120
  9. Li N., Kuang J., Ren Y., Li X., Li C. Fabrication of transparent super-hydrophilic coatings with self- cleaning and anti-fogging properties by using dendritic nano-silica // Ceram.Int. 2021. V. 47. N 13. P. 18743- 18750. https://doi.org/10.1016/j.ceramint.2021.03.209
  10. Bamane P. B., Jagtap R. N. Synthesis of the hydrophilic additive by grafting glycidyloxypropyl trimethoxysilane on hydrophilic nanosilica and its modification by using dimethyl propionic acid for self-cleaning coatings // Colloids Interface Sci.Commun. 2021. V. 43. ID 100444. https://doi.org/10.1016/j.colcom.2021.100444
  11. Zhang H., Chiao M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications //j. Med. Biol. Eng. 2015. V. 35 P. 143-155. https://doi.org/10.1007/s40846-015-0029-4
  12. Liu C., Zhao Q. The CQ ratio of surface energy components influences adhesion and removal of fouling bacteria // Biofouling. 2011. V. 27. N 3. P. 275-285. https://doi.org/10.1080/08927014.2011.563842
  13. Дринберг А. С., Козлов Г. В., Машляковкий Л. Н., Хомко Е. В., Тарасова И. Н., Карпов В. А. Разработка современных противообрастющих покрытий на основе эффективного комплекса биоцидов // Изв. СПбГТИ (ТУ). 2018. № 46 (72). С. 76-80. https://elibrary.ru/ytdyax
  14. Lagerström M., Ytreberg E., Wiklund A. K. E., Granhag L. Antifouling paints leach copper in excess-study of metal release rates and efficacy along a salinity gradient //Water Research. 2020. V. 186. ID 116383. https://doi.org/10.1016/j.watres.2020.116383

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies